15 research outputs found

    Synthesis and Electrochemical Characterization of Ligand-Protected Molecule-Like Silver Nanoparticles

    Get PDF
    poster abstractThe focus of this research was to investigate the effects of the functional group of para-substituted thiophenol (X-TP) on the optical and electrochemical properties of the ultra stable silver nanoparticles (AgNPs), Ag44(X-TP)30. We have developed a simple experimental procedure to prepare AgNP-protected with various functional groups (X = F, CF3, H, CH3). These groups were varied from electron withdrawing to electron donating abilities. The synthesized AgNPs were characterized by UV-visible absorption spectroscopy, which showed highest occupied (HOMO) and lowest unoccupied molecular orbital (LUMO) electronic transition at ~ 815 nm. This excitation energy was quantified and correlated with the potential difference between the lowest LUMO reduction and HOMO oxidation peaks obtained from cyclic voltammetry (CV) and differential pulse voltammetry (DPV). Analysis of the potential difference from the varied functional groups gives important information concerning the dependence of the AgNPs electronic properties on composition and structure

    Size-Dependent Optical and Electrochemical Energy Gaps Comparison of CdSe Nanolusters

    Get PDF
    poster abstractThe size-dependent optical and electronic properties of semiconductor nanocrystals have made them the focus of much research including the designing of photovoltaic devices and photocatalysts. These properties occur as a result of the phenomenon called quantum confinement. To improve the device efficiency it is important to have a better understanding of their size dependent electrochemical properties. Herein we demonstrate for the first time, a comparison of the size dependent optical properties and electrochemical energy gaps of poly(ethylene glycol) thiolate-protected ultra-small CdSe nanoclusters. The electrochemical energy gaps for various sized nanoclusters were determined from cyclic and differential pulse voltammetry in organic solvent/electrolyte medium, where large, moleculelike HOMO-LUMO energy gaps were observed. It was also found that a significant amount of charging energy is involved in the electrochemical energy gap. The effect of the thickness of the surface-pasivating ligands on the HOMO-LUMO energy gap is demonstrated and a quantized double layer (QDL) charging model presented

    Programmable Colloidal Approach to Hierarchical Structures of Methylammonium Lead Bromide Perovskite Nanocrystals with Bright Photoluminescent Properties

    Get PDF
    Systematic tailoring of nanocrystal architecture could provide unprecedented control over their electronic, photophysical, and charge transport properties for a variety of applications. However, at present, manipulation of the shape of perovskite nanocrystals is done mostly by trial-and-error-based experimental approaches. Here, we report systematic colloidal synthetic strategies to prepare methylammonium lead bromide quantum platelets and quantum cubes. In order to control the nucleation and growth processes of these nanocrystals, we appropriately manipulate the solvent system, surface ligand chemistry, and reaction temperature causing syntheses into anisotropic shapes. We demonstrate that both the presence of chlorinated solvent and a long chain aliphatic amine in the reaction mixture are crucial for the formation of ultrathin quantum platelets (∟2.5 nm in thickness), which is driven by mesoscale-assisted growth of spherical seed nanocrystals (∟1.6 nm in diameter) through attachment of monomers onto selective crystal facets. A combined surface and structural characterization, along with small-angle X-ray scattering analysis, confirm that the long hydrocarbon of the aliphatic amine is responsible for the well ordered hierarchical stacking of the quantum platelets of 3.5 nm separation. In contrast, the formation of ∟12 nm edge-length quantum cubes is a kinetically driven process in which a high flux of monomers is achieved by supplying thermal energy. The photoluminescence quantum yield of our quantum platelets (∟52%) is nearly 2-fold higher than quantum cubes. Moreover, the quantum platelets display a lower nonradiative rate constant than that found with quantum cubes, which suggests less surface trap states. Together, our research has the potential both to improve the design of synthetic methods for programmable control of shape and assembly and to provide insight into optoelectronic properties of these materials for solid-state device fabrication, e.g., light-emitting diodes, solar cells, and lasing materials

    Unraveling the Mechanism Underlying Surface Ligand Passivation of Colloidal Semiconductor Nanocrystals: A Route for Preparing Advanced Hybrid Nanomaterials

    Get PDF
    Optically bright colloidal semiconductor nanocrystals (CSNCs) are important nanomaterials because of their potential applications such as cellular imaging and solid-state lighting. The optoelectronic properties of CSNCs are strongly controlled by the chemical nature of the surface passivating ligands that are introduced during their synthesis. However, the existing LaMer growth model does not provide a clear understanding of the stage when ligands become attached onto the CSNC surface. Herein, apart from the three stage formation mechanism of CSNCs (supersaturation, nucleation, and growth), an entirely new stage—solely involving surface ligand attachment onto fully grown CSNCs—is now reported that controls their photoluminescence properties. Furthermore, we also demonstrate a fundamentally new surface modification approach using partially passivated CSNCs to introduce a variety of functional groups (azide, alkene, and siloxane), including photoisomerizable molecular machines (e.g., azobenzene), without the use of “state-of-the art” ligand exchange chemistry. Knowledge of the ligand adsorption phenomena and resulting adsorption time dependence expands our fundamental understanding of structure–property relationships while allowing us to engineer novel hybrid functional nanomaterials with both previously unknown optoelectronic properties and supermolecular assembly options for various applications

    Pure white‐light emitting ultrasmall organic‐inorganic hybrid perovskite nanoclusters

    Get PDF
    Organic–inorganic hybrid perovskites, direct band-gap semiconductors, have shown tremendous promise for optoelectronic device fabrication. We report the first colloidal synthetic approach to prepare ultrasmall (∼1.5 nm diameter), white-light emitting, organic–inorganic hybrid perovskite nanoclusters. The nearly pure white-light emitting ultrasmall nanoclusters were obtained by selectively manipulating the surface chemistry (passivating ligands and surface trap-states) and controlled substitution of halide ions. The nanoclusters displayed a combination of band-edge and broadband photoluminescence properties, covering a major part of the visible region of the solar spectrum with unprecedentedly large quantum yields of ∼12% and photoluminescence lifetime of ∼20 ns. The intrinsic white-light emission of perovskite nanoclusters makes them ideal and low cost hybrid nanomaterials for solid-state lighting applications

    Dual Role of Electron-Accepting Metal-Carboxylate Ligands: Reversible Expansion of Exciton Delocalization and Passivation of Nonradiative Trap-States in Molecule-like CdSe Nanocrystals

    Get PDF
    This paper reports large bathochromic shifts of up to 260 meV in both the excitonic absorption and emission peaks of oleylamine (OLA)-passivated molecule-like (CdSe)34 nanocrystals caused by postsynthetic treatment with the electron accepting Cd(O2CPh)2 complex at room temperature. These shifts are found to be reversible upon removal of Cd(O2CPh)2 by N,N,N′,N′-tetramethylethylene-1,2-diamine. 1H NMR and FTIR characterizations of the nanocrystals demonstrate that the OLA remained attached to the surface of the nanocrystals during the reversible removal of Cd(O2CPh)2. On the basis of surface ligand characterization, X-ray powder diffraction measurements, and additional control experiments, we propose that these peak red shifts are a consequence of the delocalization of confined exciton wave functions into the interfacial electronic states that are formed from interaction of the LUMO of the nanocrystals and the LUMO of Cd(O2CPh)2, as opposed to originating from a change in size or reorganization of the inorganic core. Furthermore, attachment of Cd(O2CPh)2 to the OLA-passivated (CdSe)34 nanocrystal surface increases the photoluminescence quantum yield from 5% to an unprecedentedly high 70% and causes a 3-fold increase of the photoluminescence lifetime, which are attributed to a combination of passivation of nonradiative surface trap states and relaxation of exciton confinement. Taken together, our work demonstrates the unique aspects of surface ligand chemistry in controlling the excitonic absorption and emission properties of ultrasmall (CdSe)34 nanocrystals, which could expedite their potential applications in solid-state device fabrication

    Elucidating the role of surface passivating ligand structural parameters in hole wave function delocalization in semiconductor cluster molecules

    Get PDF
    This article describes the mechanisms underlying electronic interactions between surface passivating ligands and (CdSe)34 semiconductor cluster molecules (SCMs) that facilitate band-gap engineering through the delocalization of hole wave functions without altering their inorganic core. We show here both experimentally and through density functional theory calculations that the expansion of the hole wave function beyond the SCM boundary into the ligand monolayer depends not only on the pre-binding energetic alignment of interfacial orbitals between the SCM and surface passivating ligands but is also strongly influenced by definable ligand structural parameters such as the extent of their π-conjugation [π-delocalization energy; pyrene (Py), anthracene (Anth), naphthalene (Naph), and phenyl (Ph)], binding mode [dithiocarbamate (DTC, –NH–CS2−), carboxylate (–COO−), and amine (–NH2)], and binding head group [–SH, –SeH, and –TeH]. We observe an unprecedentedly large ∼650 meV red-shift in the lowest energy optical absorption band of (CdSe)34 SCMs upon passivating their surface with Py-DTC ligands and the trend is found to be Ph- < Naph- < Anth- < Py-DTC. This shift is reversible upon removal of Py-DTC by triethylphosphine gold(I) chloride treatment at room temperature. Furthermore, we performed temperature-dependent (80–300 K) photoluminescence lifetime measurements, which show longer lifetime at lower temperature, suggesting a strong influence of hole wave function delocalization rather than carrier trapping and/or phonon-mediated relaxation. Taken together, knowledge of how ligands electronically interact with the SCM surface is crucial to semiconductor nanomaterial research in general because it allows the tuning of electronic properties of nanomaterials for better charge separation and enhanced charge transfer, which in turn will increase optoelectronic device and photocatalytic efficiencies

    Investigating the Control by Quantum Confinement and Surface Ligand Coating of Photocatalytic Efficiency in Chalcopyrite Copper Indium Diselenide Nanocrystals

    Get PDF
    In the past few years, there has been immense interest in the preparation of sustainable photocatalysts composed of semiconductor nanocrystals (NCs) as one of their components. We report here, for the first time, the effects of structural parameters of copper indium diselenide (CuInSe2) NCs on visible light-driven photocatalytic degradation of pollutants under homogeneous conditions. Ligand exchange reactions were performed replacing insulating, oleylamine capping with poly(ethylene glycol) thiols to prepare PEG-thiolate-capped, 1.8–5.3 nm diameter CuInSe2 NCs to enhance their solubility in water. This unique solubility property caused inner-sphere electron transfer reactions (O2 to O2•−) to occur at the NC surface, allowing for sustainable photocatalytic reactions. Electrochemical characterization of our dissolved CuInSe2 NCs showed that the thermodynamic driving force (−ΔG) for oxygen reduction, which increased with decreased NC size, was the dominant contributor to the overall process when compared to ..

    Effects of Surface-Passivating Ligands and Ultrasmall CdSe Nanocrystal Size on the Delocalization of Exciton Confinement

    No full text
    Here we report an unprecedentedly large and controllable decrease in the optical band gap (up to 107 nm, 610 meV) of molecule-like ultrasmall CdSe nanocrystals (diameters ranging from 1.6 to 2.0 nm) by passivating their surfaces with conjugated ligands (phenyldithiocarbamates, PDTCs) containing a series of electron-donating and -withdrawing functional groups through a ligand-exchange reaction on dodecylamine (DDA)-coated nanocrystals. This band-edge absorption shift is due to the delocalization of the strongly confined excitonic hole from nanocrystals to the ligand molecular orbitals and not from nanocrystal growth or dielectric constant effects. <sup>1</sup>H NMR analysis confirmed that the nanocrystal surface contained a mixed ligation of DDA and PDTC. The effects of the nanocrystal size on the extent of exciton delocalization were also studied and found to be smaller for larger nanocrystals. Modulating the energy level of ligand-passivated ultrasmall nanocrystals and controlling the electronic interaction at the nanocrystal-passivating ligand interface are very important to the fabrication of solid-state devices
    corecore