31 research outputs found
Systematic study of Mn-doping trends in optical properties of (Ga,Mn)As
We report on a systematic study of optical properties of (Ga,Mn)As epilayers
spanning the wide range of accessible substitutional Mn_Ga dopings. The growth
and post-growth annealing procedures were optimized for each nominal Mn doping
in order to obtain films which are as close as possible to uniform
uncompensated (Ga,Mn)As mixed crystals. We observe a broad maximum in the
mid-infrared absorption spectra whose position exhibits a prevailing blue-shift
for increasing Mn-doping. In the visible range, a peak in the magnetic circular
dichroism blue shifts with increasing Mn-doping. These observed trends confirm
that disorder-broadened valence band states provide a better one-particle
representation for the electronic structure of high-doped (Ga,Mn)As with
metallic conduction than an energy spectrum assuming the Fermi level pinned in
a narrow impurity band.Comment: 22 pages, 14 figure
Review of SRD5A3 Disease-Causing Sequence Variants and Ocular Findings in Steroid 5α-Reductase Type 3 Congenital Disorder of Glycosylation, and a Detailed New Case
Steroid 5α-reductase type 3 congenital disorder of glycosylation (SRD5A3-CDG) is a severe metabolic disease manifesting as muscle hypotonia, developmental delay, cerebellar ataxia and ocular symptoms; typically, nystagmus and optic disc pallor. Recently, early onset retinal dystrophy has been reported as an additional feature. In this study, we summarize ocular phenotypes and SRD5A3 variants reported to be associated with SRD5A3-CDG. We also describe in detail the ophthalmic findings in a 12-year-old Czech child harbouring a novel homozygous variant, c.436G>A, p.(Glu146Lys) in SRD5A3. The patient was reviewed for congenital nystagmus and bilateral optic neuropathy diagnosed at 13 months of age. Examination by spectral domain optical coherence tomography and fundus autofluorescence imaging showed clear signs of retinal dystrophy not recognized until our investigation. Best corrected visual acuity was decreased to 0.15 and 0.16 in the right and left eye, respectively, with a myopic refractive error of -3.0 dioptre sphere (DS) / -2.5 dioptre cylinder (DC) in the right and -3.0 DS / -3.0 DC in the left eye. The proband also had optic head nerve drusen, which have not been previously observed in this syndrome
Direct measurement of the three dimensional magnetization vector trajectory in GaMnAs by a magneto-optical pump-and-probe method
We report on a quantitative experimental determination of the
three-dimensional magnetization vector trajectory in GaMnAs by means of the
static and time-resolved pump-and-probe magneto-optical measurements. The
experiments are performed in a normal incidence geometry and the time evolution
of the magnetization vector is obtained without any numerical modeling of
magnetization dynamics. Our experimental method utilizes different polarization
dependences of the polar Kerr effect and magnetic linear dichroism to
disentangle the pump-induced out-of-plane and in-plane motions of
magnetization, respectively. We demonstrate that the method is sensitive enough
to allow for the determination of small angle excitations of the magnetization
in GaMnAs. The method is readily applicable to other magnetic materials with
sufficiently strong circular and linear magneto-optical effects.Comment: main paper: 7 pages, 3 figures; supplementary information: 11 pages,
6 figure
Experimental observation of the optical spin-orbit torque
Spin polarized carriers electrically injected into a magnet from an external
polarizer can exert a spin transfer torque (STT) on the magnetization. The phe-
nomenon belongs to the area of spintronics research focusing on manipulating
magnetic moments by electric fields and is the basis of the emerging
technologies for scalable magnetoresistive random access memories. In our
previous work we have reported experimental observation of the optical
counterpart of STT in which a circularly polarized pump laser pulse acts as the
external polarizer, allowing to study and utilize the phenomenon on several
orders of magnitude shorter timescales than in the electric current induced
STT. Recently it has been theoretically proposed and experimentally
demonstrated that in the absence of an external polarizer, carriers in a magnet
under applied electric field can develop a non-equilibrium spin polarization
due to the relativistic spin-orbit coupling, resulting in a current induced
spin-orbit torque (SOT) acting on the magnetization. In this paper we report
the observation of the optical counterpart of SOT. At picosecond time-scales,
we detect excitations of magnetization of a ferromagnetic semiconductor
(Ga,Mn)As which are independent of the polarization of the pump laser pulses
and are induced by non-equilibrium spin-orbit coupled photo-holes.Comment: 4 figure, supplementary information. arXiv admin note: text overlap
with arXiv:1101.104
The Phenotypic Spectrum of 47 Czech Patients with Single, Large-Scale Mitochondrial DNA Deletions
BACKGROUND:
In this retrospective study, we analysed clinical, biochemical and molecular genetic data of 47 Czech patients with Single, Large-Scale Mitochondrial DNA Deletions (SLSMD).
METHODS:
The diagnosis was based on the long-range PCR (LX-PCR) screening of mtDNA isolated from muscle biopsy in 15 patients, and from the buccal swab, urinary epithelial cells and blood in 32 patients.
RESULTS:
A total of 57% patients manifested before the age of 16. We did not find any significant difference between paediatric and adult manifestation in either the proportion of patients that would develop extraocular symptoms, or the timespan of its progression. The survival rate in patients with Pearson Syndrome reached 60%. Altogether, five patients manifested with atypical phenotype not fulfilling the latest criteria for SLSMD. No correlation was found between the disease severity and all heteroplasmy levels, lengths of the deletion and respiratory chain activities in muscle.
CONCLUSIONS:
Paediatric manifestation of Progressive External Ophthalmoplegia (PEO) is not associated with a higher risk of multisystemic involvement. Contrary to PEO and Kearns-Sayre Syndrome Spectrum, Pearson Syndrome still contributes to a significant childhood mortality. SLSMD should be considered even in cases with atypical presentation. To successfully identify carriers of SLSMD, a repeated combined analysis of buccal swab and urinary epithelial cells is neede
Comparison of micromagnetic parameters of the ferromagnetic semiconductors (Ga,Mn)(As,P) and (Ga,Mn)As
We report on the determination of micromagnetic parameters of epilayers of the ferromagnetic semiconductor (Ga,Mn)As, which has an easy axis in the sample plane, and (Ga,Mn)(As,P), which has an easy axis perpendicular to the sample plane.We use an optical analog of ferromagnetic resonancewhere the laser-pulse-induced precession of magnetization is measured directly in the time domain. By the analysis of a single set of pump-and-probe magneto-optical data, we determined the magnetic anisotropy fields, the spin stiffness, and the Gilbert damping constant in these two materials. We show that incorporation of 10% of phosphorus in (Ga,Mn)As with 6% of manganese leads not only to the expected sign change of the perpendicular-to-plane anisotropy field but also to an increase of the Gilbert damping and to a reduction of the spin stiffness. The observed changes in the micromagnetic parameters upon incorporating P in (Ga,Mn)As are consistent with the reduced hole density, conductivity, and Curie temperature of the (Ga,Mn)(As,P) material.We also show that the apparent magnetization precession damping is stronger for the n=1 spinwave resonance mode than for the n=0 uniform magnetization precession mode
Experimental observation of the optical spin transfer torque
The spin transfer torque is a phenomenon in which angular momentum of a spin
polarized electrical current entering a ferromagnet is transferred to the
magnetization. The effect has opened a new research field of electrically
driven magnetization dynamics in magnetic nanostructures and plays an important
role in the development of a new generation of memory devices and tunable
oscillators. Optical excitations of magnetic systems by laser pulses have been
a separate research field whose aim is to explore magnetization dynamics at
short time scales and enable ultrafast spintronic devices. We report the
experimental observation of the optical spin transfer torque, predicted
theoretically several years ago building the bridge between these two fields of
spintronics research. In a pump-and-probe optical experiment we measure
coherent spin precession in a (Ga,Mn)As ferromagnetic semiconductor excited by
circularly polarized laser pulses. During the pump pulse, the spin angular
momentum of photo-carriers generated by the absorbed light is transferred to
the collective magnetization of the ferromagnet. We interpret the observed
optical spin transfer torque and the magnetization precession it triggers on a
quantitative microscopic level. Bringing the spin transfer physics into optics
introduces a fundamentally distinct mechanism from the previously reported
thermal and non-thermal laser excitations of magnets. Bringing optics into the
field of spin transfer torques decreases by several orders of magnitude the
timescales at which these phenomena are explored and utilized.Comment: 11 pages, 4 figure