21 research outputs found

    Environmental Estrogens Induce Mast Cell Degranulation and Enhance IgE-Mediated Release of Allergic Mediators

    Get PDF
    BACKGROUND: Prevalence and morbidity of allergic diseases have increased over the last decades. Based on the recently recognized differences in asthma prevalence between the sexes, we have examined the effect of endogenous estrogens on a key element of the allergic response. Some lipophilic pollutants have estrogen-like activities and are termed environmental estrogens. These pollutants tend to degrade slowly in the environment and to bioaccumulate and bioconcentrate in the food chain; they also have long biological half-lives. OBJECTIVES: Our goal in this study was to identify possible pathogenic roles for environmental estrogens in the development of allergic diseases. METHODS: We screened a number of environmental estrogens for their ability to modulate the release of allergic mediators from mast cells. We incubated a human mast cell line and primary mast cell cultures derived from bone marrow of wild type and estrogen receptor α (ER-α )–deficient mice with environmental estrogens with and without estradiol or IgE and allergens. We assessed degranulation of mast cells by quantifying the release of β -hexosaminidase. RESULTS: All of the environmental estrogens tested caused rapid, dose-related release of β -hexosaminidase from mast cells and enhanced IgE-mediated release. The combination of physiologic concentrations of 17β -estradiol and several concentrations of environmental estrogens had additive effects on mast cell degranulation. Comparison of bone marrow mast cells from ER-α –sufficient and ER-α –deficient mice indicated that much of the effect of environmental estrogens was mediated by ER-α . CONCLUSIONS: Our findings suggest that estrogenic environmental pollutants might promote allergic diseases by inducing and enhancing mast cell degranulation by physiologic estrogens and exposure to allergens

    Molecular Cloning and Expression of Cro s 1: an Occupational Allergen from Saffron Pollen (Crocus sativus)

    Get PDF
    Background: The cultivation of saffron is expanding through the southeast of Iran, and allergy to saffron pollen occurs in workers involved in processing this plant. We aimed to clone, sequence and express a major allergen involved in saffron pollen allergy, and to compare the recombinant with the natural allergen. Methods: The N-terminal amino acid sequence of Cro s 1, an allergen from saffron pollen, was determined after immunoblotting. The cDNA encoding for this allergen was cloned by PCR utilizing a primer based on the N-terminal amino acid sequence. Recombinant Cro s 1 (rCro s 1) was expressed as a soluble protein in Pichia pastoris and purified to homogeneity by gel filtration. Inhibition of IgE binding to rCro s 1 by pollen extract was analyzed by ELISA. Results: The allergen Cro s 1 was identified from saffron pollen extracts and cloned by PCR. Cro s 1 cDNA defined an acidic polypeptide with homology to pollen proteins from Chenopodium album and Ligastrum vulgaris. The rCro s 1 was expressed in P. pastoris at 28 mg/l. Saffron pollen extract inhibited the binding of patient serum IgE to rCro s 1. Conclusion: We identified and cloned the first Crocus sativus pollen allergen. rCro s 1 cDNA shows a very high homology with Che a 1, the major allergen of lamb's-quarter, Chenopodium album, Caryophyllales, pollen (97%). Cro s 1 is a useful tool for specific diagnosis and structural studies of occupational allergy to saffron

    Fetal exposure to bisphenol A as a risk factor for the development of childhood asthma: an animal model study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The prevalence of asthma in industrialized countries has been increasing dramatically and asthma is now the most common chronic disease of children in the United States. The rapidity of the increase strongly suggests that changes in environmental exposures are the likely cause of this epidemic. Further, the early onset of allergic manifestations suggests that these exposures may act on the prenatal development of the immune system. We have focused on the potential effects of bisphenol A (BPA), a chemical pollutant with one of the largest productions, on the development of childhood asthma. We have reported that perinatal BPA exposure promotes the development of allergic asthma in a mouse model. The current study was designed to identify a critical period of BPA exposure and to begin elucidating the mechanisms for this susceptibility.</p> <p>Methods</p> <p>Female BALB/c mice received 10 micro g/ml BPA in their drinking water from one week before pregnancy until the end of the study. Some of the pups were transferred in the first 48 h of life from their BPA-loaded mother to an unexposed mother, or vice versa. Half of the pups were sensitized with a low dose of the experimental allergen ovalbumin (OVA), the rest received PBS as an unsensitized controls. On day 22, the pups were challenged by inhalations of ovalbumin or PBS followed by quantification of eosinophils in and hyperreactivity of their airways, major indicators of experimental asthma in this classical mouse model. Hepatic expression of two isoforms of UDP-glucuronosyltransferase (Ugt) was quantified by quantitative RT-PCR at various ages.</p> <p>Results</p> <p>Pups exposed to BPA in utero and through breast milk, or in utero only, displayed an asthma phenotype in response to their "suboptimal" allergic sensitization, whereas, pups only exposed to BPA postnatally from breast milk, did not. The expression of Ugt2b1, an isoform related to BPA clearance in rats, was not detectable in mouse fetuses and newborn pups, but increased by day 5 and approached adult levels by day 25.</p> <p>Conclusions</p> <p>Prenatal exposures that produce environmentally relevant burdens of BPA, followed by postnatal allergic sensitization and challenges, promote the development of experimental allergic asthma. Delayed expression of BPA-metabolizing enzymes may explain, at least in part, the enhanced fetal susceptibility to this common environmental contaminant.</p

    The effects of early low dose exposures to the Environmental Estrogen Bisphenol A on the Development of Childhood Asthma

    No full text
    Exposure to environmental chemicals is a potential cause for the rapid increase in the prevalence of allergic asthma over the last few decades. The production of the environmental estrogen bisphenol A, the monomer of polycarbonate plastics, has increased rapidly over the last 50 years, such that bisphenol A is one of the most highly produced chemicals. It is detectable in the urine of the vast majority of the human population. While the relationship between the increase of bisphenol A in our environment and the prevalence of asthma does not prove a cause and effect relationship, it provides a strong rationale for experiments that have tested the hypothesis. Because of its small molecular size and hydrophobicity, bisphenol A is easily transferred from the mother to the fetus, via the placenta and in breast milk. We have reviewed all the publications available on medline on the human epidemiological studies of the early bisphenol A exposure on the development of allergic asthma and experimental studies using mouse model of the effects of early bisphenol A exposure on the development of asthma. There are eight human epidemiological studies and five mouse model studies currently published. The human studies suggest that bisphenol A exposure in early life enhances the likelihood of developing asthma on at least one of the study groups. The effects of early bisphenol A exposure were observed as an enhanced development of asthma before adolescent in the animal model
    corecore