459 research outputs found

    Inboard and outboard radial electric field wells in the H- and I-mode pedestal of Alcator C-Mod and poloidal variations of impurity temperature

    Get PDF
    We present inboard (HFS) and outboard (LFS) radial electric field (E[subscript r]) and impurity temperature (T[subscript z]) measurements in the I-mode and H-mode pedestal of Alcator C-Mod. These measurements reveal strong Er wells at the HFS and the LFS midplane in both regimes and clear pedestals in T[subscript z], which are of similar shape and height for the HFS and LFS. While the H-mode E[subscript r] well has a radially symmetric structure, the E[subscript r] well in I-mode is asymmetric, with a stronger ExB shear layer at the outer edge of the E[subscript r] well, near the separatrix. Comparison of HFS and LFS profiles indicates that impurity temperature and plasma potential are not simultaneously flux functions. Uncertainties in radial alignment after mapping HFS measurements along flux surfaces to the LFS do not, however, allow direct determination as to which quantity varies poloidally and to what extent. Radially aligning HFS and LFS measurements based on the T[subscript z] profiles would result in substantial inboard-outboard variations of plasma potential and electron density. Aligning HFS and LFS E[subscript r] wells instead also approximately aligns the impurity poloidal flow profiles, while resulting in a LFS impurity temperature exceeding the HFS values in the region of steepest gradients by up to 70%. Considerations based on a simplified form of total parallel momentum balance and estimates of parallel and perpendicular heat transport time scales seem to favor an approximate alignment of the E[subscript r] wells and a substantial poloidal asymmetry in impurity temperature.United States. Dept. of Energy (Cooperative Agreement DE-FC02-99ER54512)Swiss National Science Foundatio

    Domino-like transient dynamics at seizure onset in epilepsy

    Get PDF
    This is the final version. Available on open access from Public Library of Science via the DOI in this recordData Availability: We have made publicly available the 15 epochs of human EEG data containing generalized paroxysms classified as focal onset, and all 15 epochs containing seizures from one individual used in the manuscript, 1252 EEG epochs containing seizures classified as generalized onset and the 6 mouse mEC recordings. All data and the code used for the data analysis and model simulations they can be accessed via DOI 10.17605/OSF.IO/G2EXK.The International League Against Epilepsy (ILAE) groups seizures into “focal”, “generalized” and “unknown” based on whether the seizure onset is confined to a brain region in one hemisphere, arises in several brain region simultaneously, or is not known, respectively. This separation fails to account for the rich diversity of clinically and experimentally observed spatiotemporal patterns of seizure onset and even less so for the properties of the brain networks generating them. We consider three different patterns of domino-like seizure onset in Idiopathic Generalized Epilepsy (IGE) and present a novel approach to classification of seizures. To understand how these patterns are generated on networks requires understanding of the relationship between intrinsic node dynamics and coupling between nodes in the presence of noise, which currently is unknown. We investigate this interplay here in the framework of domino-like recruitment across a network. In particular, we use a phenomenological model of seizure onset with heterogeneous coupling and node properties, and show that in combination they generate a range of domino-like onset patterns observed in the IGE seizures. We further explore the individual contribution of heterogeneous node dynamics and coupling by interpreting in-vitro experimental data in which the speed of onset can be chemically modulated. This work contributes to a better understanding of possible drivers for the spatiotemporal patterns observed at seizure onset and may ultimately contribute to a more personalized approach to classification of seizure types in clinical practice.Engineering and Physical Sciences Research Council (EPSRC)Medical Research Council (MRC

    HPV testing in primary screening of older women

    Get PDF
    Certain types of the human papilloma virus (HPV) are well established as the primary cause of cervical cancer. Several studies have shown that HPV testing can improve the detection rate of high-grade cervical intraepithelial neoplasia (CIN), but these have been carried out primarily in younger women. In this study we evaluated the role of HPV testing as an adjunct to cytology in women aged 35 or over. An additional aim was to evaluate commercially available kits for HPV testing. A total of 2988 eligible women aged 34 or more attending for a routine smear in 40 general practitioner practices received HPV testing in addition to routine cytology, after having given written informed consent. Samples were assayed by polymerase chain reaction (PCR) and two versions of the Hybrid Capture test for HPV, and women were invited for colposcopy if there was any cytological abnormality (including borderline smears) or the PCR test was positive. Any apparent abnormality was biopsied and loop-excision was performed as necessary. CIN was judged by histology; 42 women had high-grade CIN, of which six were cytology negative (86% sensitivity for borderline or worse) and three had a borderline smear (79% sensitivity for mild dyskaryosis or worse). The positive predictive value of a borderline smear was only 3.1%. Eleven high-grade lesions were negative by the PCR HPV test (sensitivity 74%). The first generation Hybrid Capture II test had a similar sensitivity but an unacceptably high false positive rate (18.3%), while the newer Hybrid Capture II microtitre kit had a 95% sensitivity and a 2.3% positivity rate in normal women when used at a 2 pg ml−1 cut-off (positive predictive value 27%). Cytology performed very well in this older cohort of women. The newer Hybrid Capture II microtitre test may be a useful adjunct, especially if the results reported here are reproducible in other studies. A combined screening test offers the possibility of greater protection and/or longer screening intervals, which could reduce the overall cost of the screening programme. © 1999 Cancer Research Campaig

    Batch effect correction for genome-wide methylation data with Illumina Infinium platform

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genome-wide methylation profiling has led to more comprehensive insights into gene regulation mechanisms and potential therapeutic targets. Illumina Human Methylation BeadChip is one of the most commonly used genome-wide methylation platforms. Similar to other microarray experiments, methylation data is susceptible to various technical artifacts, particularly batch effects. To date, little attention has been given to issues related to normalization and batch effect correction for this kind of data.</p> <p>Methods</p> <p>We evaluated three common normalization approaches and investigated their performance in batch effect removal using three datasets with different degrees of batch effects generated from HumanMethylation27 platform: quantile normalization at average β value (QNβ); two step quantile normalization at probe signals implemented in "lumi" package of R (lumi); and quantile normalization of A and B signal separately (ABnorm). Subsequent Empirical Bayes (EB) batch adjustment was also evaluated.</p> <p>Results</p> <p>Each normalization could remove a portion of batch effects and their effectiveness differed depending on the severity of batch effects in a dataset. For the dataset with minor batch effects (Dataset 1), normalization alone appeared adequate and "lumi" showed the best performance. However, all methods left substantial batch effects intact in the datasets with obvious batch effects and further correction was necessary. Without any correction, 50 and 66 percent of CpGs were associated with batch effects in Dataset 2 and 3, respectively. After QNβ, lumi or ABnorm, the number of CpGs associated with batch effects were reduced to 24, 32, and 26 percent for Dataset 2; and 37, 46, and 35 percent for Dataset 3, respectively. Additional EB correction effectively removed such remaining non-biological effects. More importantly, the two-step procedure almost tripled the numbers of CpGs associated with the outcome of interest for the two datasets.</p> <p>Conclusion</p> <p>Genome-wide methylation data from Infinium Methylation BeadChip can be susceptible to batch effects with profound impacts on downstream analyses and conclusions. Normalization can reduce part but not all batch effects. EB correction along with normalization is recommended for effective batch effect removal.</p

    Mechanomyographic amplitude and frequency responses during dynamic muscle actions: a comprehensive review

    Get PDF
    The purpose of this review is to examine the literature that has investigated mechanomyographic (MMG) amplitude and frequency responses during dynamic muscle actions. To date, the majority of MMG research has focused on isometric muscle actions. Recent studies, however, have examined the MMG time and/or frequency domain responses during various types of dynamic activities, including dynamic constant external resistance (DCER) and isokinetic muscle actions, as well as cycle ergometry. Despite the potential influences of factors such as changes in muscle length and the thickness of the tissue between the muscle and the MMG sensor, there is convincing evidence that during dynamic muscle actions, the MMG signal provides valid information regarding muscle function. This argument is supported by consistencies in the MMG literature, such as the close relationship between MMG amplitude and power output and a linear increase in MMG amplitude with concentric torque production. There are still many issues, however, that have yet to be resolved, and the literature base for MMG during both dynamic and isometric muscle actions is far from complete. Thus, it is important to investigate the unique applications of MMG amplitude and frequency responses with different experimental designs/methodologies to continually reassess the uses/limitations of MMG

    Synthetic biology open language visual (SBOL Visual) version 2.3

    Get PDF
    People who are engineering biological organisms often find it useful to communicate in diagrams, both about the structure of the nucleic acid sequences that they are engineering and about the functional relationships between sequence features and other molecular species. Some typical practices and conventions have begun to emerge for such diagrams. The Synthetic Biology Open Language Visual (SBOL Visual) has been developed as a standard for organizing and systematizing such conventions in order to produce a coherent language for expressing the structure and function of genetic designs. This document details version 2.3 of SBOL Visual, which builds on the prior SBOL Visual 2.2 in several ways. First, the specification now includes higher-level "interactions with interactions," such as an inducer molecule stimulating a repression interaction. Second, binding with a nucleic acid backbone can be shown by overlapping glyphs, as with other molecular complexes. Finally, a new "unspecified interaction" glyph is added for visualizing interactions whose nature is unknown, the "insulator" glyph is deprecated in favor of a new "inert DNA spacer" glyph, and the polypeptide region glyph is recommended for showing 2A sequences

    Re-Shuffling of Species with Climate Disruption: A No-Analog Future for California Birds?

    Get PDF
    By facilitating independent shifts in species' distributions, climate disruption may result in the rapid development of novel species assemblages that challenge the capacity of species to co-exist and adapt. We used a multivariate approach borrowed from paleoecology to quantify the potential change in California terrestrial breeding bird communities based on current and future species-distribution models for 60 focal species. Projections of future no-analog communities based on two climate models and two species-distribution-model algorithms indicate that by 2070 over half of California could be occupied by novel assemblages of bird species, implying the potential for dramatic community reshuffling and altered patterns of species interactions. The expected percentage of no-analog bird communities was dependent on the community scale examined, but consistent geographic patterns indicated several locations that are particularly likely to host novel bird communities in the future. These no-analog areas did not always coincide with areas of greatest projected species turnover. Efforts to conserve and manage biodiversity could be substantially improved by considering not just future changes in the distribution of individual species, but including the potential for unprecedented changes in community composition and unanticipated consequences of novel species assemblages

    Rapid End-Point Quantitation of Prion Seeding Activity with Sensitivity Comparable to Bioassays

    Get PDF
    A major problem for the effective diagnosis and management of prion diseases is the lack of rapid high-throughput assays to measure low levels of prions. Such measurements have typically required prolonged bioassays in animals. Highly sensitive, but generally non-quantitative, prion detection methods have been developed based on prions' ability to seed the conversion of normally soluble protease-sensitive forms of prion protein to protease-resistant and/or amyloid fibrillar forms. Here we describe an approach for estimating the relative amount of prions using a new prion seeding assay called real-time quaking induced conversion assay (RT-QuIC). The underlying reaction blends aspects of the previously described quaking-induced conversion (QuIC) and amyloid seeding assay (ASA) methods and involves prion-seeded conversion of the alpha helix-rich form of bacterially expressed recombinant PrPC to a beta sheet-rich amyloid fibrillar form. The RT-QuIC is as sensitive as the animal bioassay, but can be accomplished in 2 days or less. Analogous to end-point dilution animal bioassays, this approach involves testing of serial dilutions of samples and statistically estimating the seeding dose (SD) giving positive responses in 50% of replicate reactions (SD50). Brain tissue from 263K scrapie-affected hamsters gave SD50 values of 1011-1012/g, making the RT-QuIC similar in sensitivity to end-point dilution bioassays. Analysis of bioassay-positive nasal lavages from hamsters affected with transmissible mink encephalopathy gave SD50 values of 103.5–105.7/ml, showing that nasal cavities release substantial prion infectivity that can be rapidly detected. Cerebral spinal fluid from 263K scrapie-affected hamsters contained prion SD50 values of 102.0–102.9/ml. RT-QuIC assay also discriminated deer chronic wasting disease and sheep scrapie brain samples from normal control samples. In principle, end-point dilution quantitation can be applied to many types of prion and amyloid seeding assays. End point dilution RT-QuIC provides a sensitive, rapid, quantitative, and high throughput assay of prion seeding activity

    Multiple Events Lead to Dendritic Spine Loss in Triple Transgenic Alzheimer's Disease Mice

    Get PDF
    The pathology of Alzheimer's disease (AD) is characterized by the accumulation of amyloid-β (Aβ) peptide, hyperphosphorylated tau protein, neuronal death, and synaptic loss. By means of long-term two-photon in vivo imaging and confocal imaging, we characterized the spatio-temporal pattern of dendritic spine loss for the first time in 3xTg-AD mice. These mice exhibit an early loss of layer III neurons at 4 months of age, at a time when only soluble Aβ is abundant. Later on, dendritic spines are lost around amyloid plaques once they appear at 13 months of age. At the same age, we observed spine loss also in areas apart from amyloid plaques. This plaque independent spine loss manifests exclusively at dystrophic dendrites that accumulate both soluble Aβ and hyperphosphorylated tau intracellularly. Collectively, our data shows that three spatio-temporally independent events contribute to a net loss of dendritic spines. These events coincided either with the occurrence of intracellular soluble or extracellular fibrillar Aβ alone, or the combination of intracellular soluble Aβ and hyperphosphorylated tau
    corecore