44 research outputs found

    Biodiversity in intensive and extensive grasslands in Finland : the impacts of spatial and temporal changes of agricultural land use

    Get PDF
    Biodiversity degradation is a national and global problem which is interconnected with land use and climate change. All these are major unsolved questions and their interactions are only partly understood. Agriculture and especially cattle farming is under keen societal focus because of its significant role in soil carbon losses, greenhouse gas (GHG) emissions and biodiversity preservation. We reviewed the Finnish scientific literature to assess the impact of intensive contra extensive grass production on biodiversity using vascular plants, vertebrates, invertebrates and soil biota. Still a few decades ago, mixed farming was prevailing almost everywhere in Finland, but nowadays cereal production is essentially clustered in the southwest and milk and beef production in the northeast. This is reflected in the distribution of intensive (connected with cattle) and extensive grasslands (both types of farming). The bird community was most abundant and species rich in farmland which provides small fields in large blocks of farmland and many kinds of crops, including both intensive and extensive grasslands. Overall permanent grasslands with rather simply vegetation diversity can maintain a diverse community of spiders and leafhoppers, and act as overwintering habitat for polyphagous predators in field ecosystems. The ecological requirement of all species and species groups are probably never met at one site and consequently target should be in having differently managed areas at regional scale. For some of the taxa, ecosystem services could be indicated, but a research-based quantitative assessment is available only for carbon sequestration and weak impact of dung-beetles in diminishing GHG emissions from cow pats. Our review demonstrated that quite much is known about biodiversity in extensively managed grasslands, but very little in intensively managed grasslands. An important question is whether there is some threshold for the proportion of grasslands under which regional biodiversity will be reduced. Intensive production offers limited value to replace the high biodiversity value of semi-natural pastures.Peer reviewe

    Genome-Wide Association Study Implicates Atrial Natriuretic Peptide Rather Than B-Type Natriuretic Peptide in the Regulation of Blood Pressure in the General Population

    Get PDF
    Background Cardiomyocytes secrete atrial natriuretic peptide (ANP) and B-type natriuretic peptide (BNP) in response to mechanical stretching, making them useful clinical biomarkers of cardiac stress. Both human and animal studies indicate a role for ANP as a regulator of blood pressure with conflicting results for BNP. Methods and Results We used genome-wide association analysis (n=6296) to study the effects of genetic variants on circulating natriuretic peptide concentrations and compared the impact of natriuretic peptide-associated genetic variants on blood pressure (n=27059). Eight independent genetic variants in 2 known (NPPA-NPPB and POC1B-GALNT4) and 1 novel locus (PPP3CC) associated with midregional proANP (MR-proANP), BNP, aminoterminal proBNP (NT-proBNP), or BNP:NT-proBNP ratio. The NPPA-NPPB locus containing the adjacent genes encoding ANP and BNP harbored 4 independent cis variants with effects specific to either midregional proANP or BNP and a rare missense single nucleotide polymorphism in NT-proBNP seriously altering its measurement. Variants near the calcineurin catalytic subunit gamma gene PPP3CC and the polypeptide N-acetylgalactosaminyltransferase 4 gene GALNT4 associated with BNP:NT-proBNP ratio but not with BNP or midregional proANP, suggesting effects on the post-translational regulation of proBNP. Out of the 8 individual variants, only those correlated with midregional proANP had a statistically significant albeit weak impact on blood pressure. The combined effect of these 3 single nucleotide polymorphisms also associated with hypertension risk (P=8.2x10(-4)). Conclusions Common genetic differences affecting the circulating concentration of ANP associated with blood pressure, whereas those affecting BNP did not, highlighting the blood pressure-lowering effect of ANP in the general population.Peer reviewe

    Genome-Wide Association Study Implicates Atrial Natriuretic Peptide Rather Than B-Type Natriuretic Peptide in the Regulation of Blood Pressure in the General Population

    Get PDF
    Background Cardiomyocytes secrete atrial natriuretic peptide (ANP) and B-type natriuretic peptide (BNP) in response to mechanical stretching, making them useful clinical biomarkers of cardiac stress. Both human and animal studies indicate a role for ANP as a regulator of blood pressure with conflicting results for BNP. Methods and Results We used genome-wide association analysis (n=6296) to study the effects of genetic variants on circulating natriuretic peptide concentrations and compared the impact of natriuretic peptide-associated genetic variants on blood pressure (n=27059). Eight independent genetic variants in 2 known (NPPA-NPPB and POC1B-GALNT4) and 1 novel locus (PPP3CC) associated with midregional proANP (MR-proANP), BNP, aminoterminal proBNP (NT-proBNP), or BNP:NT-proBNP ratio. The NPPA-NPPB locus containing the adjacent genes encoding ANP and BNP harbored 4 independent cis variants with effects specific to either midregional proANP or BNP and a rare missense single nucleotide polymorphism in NT-proBNP seriously altering its measurement. Variants near the calcineurin catalytic subunit gamma gene PPP3CC and the polypeptide N-acetylgalactosaminyltransferase 4 gene GALNT4 associated with BNP:NT-proBNP ratio but not with BNP or midregional proANP, suggesting effects on the post-translational regulation of proBNP. Out of the 8 individual variants, only those correlated with midregional proANP had a statistically significant albeit weak impact on blood pressure. The combined effect of these 3 single nucleotide polymorphisms also associated with hypertension risk (P=8.2x10(-4)). Conclusions Common genetic differences affecting the circulating concentration of ANP associated with blood pressure, whereas those affecting BNP did not, highlighting the blood pressure-lowering effect of ANP in the general population.Peer reviewe

    Recontacting biobank participants to collect lifestyle, behavioural and cognitive information via online questionnaires : lessons from a pilot study within FinnGen

    Get PDF
    OBJECTIVES: To recontact biobank participants and collect cognitive, behavioural and lifestyle information via a secure online platform. DESIGN: Biobank-based recontacting pilot study. SETTING: Three Finnish biobanks (Helsinki, Auria, Tampere) recruiting participants from February 2021 to July 2021. PARTICIPANTS: All eligible invitees were enrolled in FinnGen by their biobanks (Helsinki, Auria, Tampere), had available genetic data and were >18 years old. Individuals with severe neuropsychiatric disease or cognitive or physical disabilities were excluded. Lastly, 5995 participants were selected based on their polygenic score for cognitive abilities and invited to the study. Among invitees, 1115 had successfully participated and completed the study questionnaire(s). OUTCOME MEASURES: The primary outcome was the participation rate among study invitees. Secondary outcomes included questionnaire completion rate, quality of data collected and comparison of participation rate boosting strategies. RESULTS: The overall participation rate was 18.6% among all invitees and 23.1% among individuals aged 18-69. A second reminder letter yielded an additional 9.7% participation rate in those who did not respond to the first invitation. Recontacting participants via an online healthcare portal yielded lower participation than recontacting via physical letter. The completion rate of the questionnaire and cognitive tests was high (92% and 85%, respectively), and measurements were overall reliable among participants. For example, the correlation (r) between self-reported body mass index and that collected by the biobanks was 0.92. CONCLUSION: In summary, this pilot suggests that recontacting FinnGen participants with the goal to collect a wide range of cognitive, behavioural and lifestyle information without additional engagement results in a low participation rate, but with reliable data. We suggest that such information be collected at enrolment, if possible, rather than via post hoc recontacting.publishedVersionPeer reviewe

    New genetic loci link adipose and insulin biology to body fat distribution.

    Get PDF
    Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms

    Genetic insights into resting heart rate and its role in cardiovascular disease

    Get PDF
    Resting heart rate is associated with cardiovascular diseases and mortality in observational and Mendelian randomization studies. The aims of this study are to extend the number of resting heart rate associated genetic variants and to obtain further insights in resting heart rate biology and its clinical consequences. A genome-wide meta-analysis of 100 studies in up to 835,465 individuals reveals 493 independent genetic variants in 352 loci, including 68 genetic variants outside previously identified resting heart rate associated loci. We prioritize 670 genes and in silico annotations point to their enrichment in cardiomyocytes and provide insights in their ECG signature. Two-sample Mendelian randomization analyses indicate that higher genetically predicted resting heart rate increases risk of dilated cardiomyopathy, but decreases risk of developing atrial fibrillation, ischemic stroke, and cardio-embolic stroke. We do not find evidence for a linear or non-linear genetic association between resting heart rate and all-cause mortality in contrast to our previous Mendelian randomization study. Systematic alteration of key differences between the current and previous Mendelian randomization study indicates that the most likely cause of the discrepancy between these studies arises from false positive findings in previous one-sample MR analyses caused by weak-instrument bias at lower P-value thresholds. The results extend our understanding of resting heart rate biology and give additional insights in its role in cardiovascular disease development
    corecore