21 research outputs found
Identification of rare-disease genes using blood transcriptome sequencing and large control cohorts.
It is estimated that 350 million individuals worldwide suffer from rare diseases, which are predominantly caused by mutation in a single gene1. The current molecular diagnostic rate is estimated at 50%, with whole-exome sequencing (WES) among the most successful approaches2-5. For patients in whom WES is uninformative, RNA sequencing (RNA-seq) has shown diagnostic utility in specific tissues and diseases6-8. This includes muscle biopsies from patients with undiagnosed rare muscle disorders6,9, and cultured fibroblasts from patients with mitochondrial disorders7. However, for many individuals, biopsies are not performed for clinical care, and tissues are difficult to access. We sought to assess the utility of RNA-seq from blood as a diagnostic tool for rare diseases of different pathophysiologies. We generated whole-blood RNA-seq from 94 individuals with undiagnosed rare diseases spanning 16 diverse disease categories. We developed a robust approach to compare data from these individuals with large sets of RNA-seq data for controls (n = 1,594 unrelated controls and n = 49 family members) and demonstrated the impacts of expression, splicing, gene and variant filtering strategies on disease gene identification. Across our cohort, we observed that RNA-seq yields a 7.5% diagnostic rate, and an additional 16.7% with improved candidate gene resolution
Distinguishing Type 2 Diabetes from Type 1 Diabetes in African American and Hispanic American Pediatric Patients
To test the hypothesis that clinical observations made at patient presentation can distinguish type 2 diabetes (T2D) from type 1 diabetes (T1D) in pediatric patients aged 2 to 18.Medical records of 227 African American and 112 Hispanic American pediatric patients diagnosed as T1D or T2D were examined to compare parameters in the two diseases. Age at presentation, BMI z-score, and gender were the variables used in logistic regression analysis to create models for T2D prediction.The regression-based model created from African American data had a sensitivity of 92% and a specificity of 89%; testing of a replication cohort showed 91% sensitivity and 93% specificity. A model based on the Hispanic American data showed 92% sensitivity and 90% specificity. Similarities between African American and Hispanic American patients include: (1) age at onset for both T1D and T2D decreased from the 1980s to the 2000s; (2) risk of T2D increased markedly with obesity. Racial/ethnic-specific observations included: (1) in African American patients, the proportion of females was significantly higher than that of males for T2D compared to T1D (p<0.0001); (2) in Hispanic Americans, the level of glycated hemoglobin (HbA1c) was significantly higher in T1D than in T2D (p<0.002) at presentation; (3) the strongest contributor to T2D risk was female gender in African Americans, while the strongest contributor to T2D risk was BMI z-score in Hispanic Americans.Distinction of T2D from T1D at patient presentation was possible with good sensitivity and specificity using only three easily-assessed variables: age, gender, and BMI z-score. In African American pediatric diabetes patients, gender was the strongest predictor of T2D, while in Hispanic patients, BMI z-score was the strongest predictor. This suggests that race/ethnic specific models may be useful to optimize distinction of T1D from T2D at presentation
Genetic effects on gene expression across human tissues
Characterization of the molecular function of the human genome and its variation across individuals is essential for identifying the cellular mechanisms that underlie human genetic traits and diseases. The Genotype-Tissue Expression (GTEx) project aims to characterize variation in gene expression levels across individuals and diverse tissues of the human body, many of which are not easily accessible. Here we describe genetic effects on gene expression levels across 44 human tissues. We find that local genetic variation affects gene expression levels for the majority of genes, and we further identify inter-chromosomal genetic effects for 93 genes and 112 loci. On the basis of the identified genetic effects, we characterize patterns of tissue specificity, compare local and distal effects, and evaluate the functional properties of the genetic effects. We also demonstrate that multi-tissue, multi-individual data can be used to identify genes and pathways affected by human disease-associated variation, enabling a mechanistic interpretation of gene regulation and the genetic basis of diseas
Global disparities in surgeons’ workloads, academic engagement and rest periods: the on-calL shIft fOr geNEral SurgeonS (LIONESS) study
: The workload of general surgeons is multifaceted, encompassing not only surgical procedures but also a myriad of other responsibilities. From April to May 2023, we conducted a CHERRIES-compliant internet-based survey analyzing clinical practice, academic engagement, and post-on-call rest. The questionnaire featured six sections with 35 questions. Statistical analysis used Chi-square tests, ANOVA, and logistic regression (SPSS® v. 28). The survey received a total of 1.046 responses (65.4%). Over 78.0% of responders came from Europe, 65.1% came from a general surgery unit; 92.8% of European and 87.5% of North American respondents were involved in research, compared to 71.7% in Africa. Europe led in publishing research studies (6.6 ± 8.6 yearly). Teaching involvement was high in North America (100%) and Africa (91.7%). Surgeons reported an average of 6.7 ± 4.9 on-call shifts per month, with European and North American surgeons experiencing 6.5 ± 4.9 and 7.8 ± 4.1 on-calls monthly, respectively. African surgeons had the highest on-call frequency (8.7 ± 6.1). Post-on-call, only 35.1% of respondents received a day off. Europeans were most likely (40%) to have a day off, while African surgeons were least likely (6.7%). On the adjusted multivariable analysis HDI (Human Development Index) (aOR 1.993) hospital capacity > 400 beds (aOR 2.423), working in a specialty surgery unit (aOR 2.087), and making the on-call in-house (aOR 5.446), significantly predicted the likelihood of having a day off after an on-call shift. Our study revealed critical insights into the disparities in workload, access to research, and professional opportunities for surgeons across different continents, underscored by the HDI
Genetic effects on gene expression across human tissues
Characterization of the molecular function of the human genome and its variation across individuals is essential for identifying the cellular mechanisms that underlie human genetic traits and diseases. The Genotype-Tissue Expression (GTEx) project aims to characterize variation in gene expression levels across individuals and diverse tissues of the human body, many of which are not easily accessible. Here we describe genetic effects on gene expression levels across 44 human tissues. We find that local genetic variation affects gene expression levels for the majority of genes, and we further identify inter-chromosomal genetic effects for 93 genes and 112 loci. On the basis of the identified genetic effects, we characterize patterns of tissue specificity, compare local and distal effects, and evaluate the functional properties of the genetic effects. We also demonstrate that multi-tissue, multi-individual data can be used to identify genes and pathways affected by human disease-associated variation, enabling a mechanistic interpretation of gene regulation and the genetic basis of disease
Mortality from gastrointestinal congenital anomalies at 264 hospitals in 74 low-income, middle-income, and high-income countries: a multicentre, international, prospective cohort study
Summary
Background Congenital anomalies are the fifth leading cause of mortality in children younger than 5 years globally.
Many gastrointestinal congenital anomalies are fatal without timely access to neonatal surgical care, but few studies
have been done on these conditions in low-income and middle-income countries (LMICs). We compared outcomes of
the seven most common gastrointestinal congenital anomalies in low-income, middle-income, and high-income
countries globally, and identified factors associated with mortality.
Methods We did a multicentre, international prospective cohort study of patients younger than 16 years, presenting to
hospital for the first time with oesophageal atresia, congenital diaphragmatic hernia, intestinal atresia, gastroschisis,
exomphalos, anorectal malformation, and Hirschsprung’s disease. Recruitment was of consecutive patients for a
minimum of 1 month between October, 2018, and April, 2019. We collected data on patient demographics, clinical
status, interventions, and outcomes using the REDCap platform. Patients were followed up for 30 days after primary
intervention, or 30 days after admission if they did not receive an intervention. The primary outcome was all-cause,
in-hospital mortality for all conditions combined and each condition individually, stratified by country income status.
We did a complete case analysis.
Findings We included 3849 patients with 3975 study conditions (560 with oesophageal atresia, 448 with congenital
diaphragmatic hernia, 681 with intestinal atresia, 453 with gastroschisis, 325 with exomphalos, 991 with anorectal
malformation, and 517 with Hirschsprung’s disease) from 264 hospitals (89 in high-income countries, 166 in middleincome
countries, and nine in low-income countries) in 74 countries. Of the 3849 patients, 2231 (58·0%) were male.
Median gestational age at birth was 38 weeks (IQR 36–39) and median bodyweight at presentation was 2·8 kg (2·3–3·3).
Mortality among all patients was 37 (39·8%) of 93 in low-income countries, 583 (20·4%) of 2860 in middle-income
countries, and 50 (5·6%) of 896 in high-income countries (p<0·0001 between all country income groups).
Gastroschisis had the greatest difference in mortality between country income strata (nine [90·0%] of ten in lowincome
countries, 97 [31·9%] of 304 in middle-income countries, and two [1·4%] of 139 in high-income countries;
p≤0·0001 between all country income groups). Factors significantly associated with higher mortality for all patients
combined included country income status (low-income vs high-income countries, risk ratio 2·78 [95% CI 1·88–4·11],
p<0·0001; middle-income vs high-income countries, 2·11 [1·59–2·79], p<0·0001), sepsis at presentation (1·20
[1·04–1·40], p=0·016), higher American Society of Anesthesiologists (ASA) score at primary intervention
(ASA 4–5 vs ASA 1–2, 1·82 [1·40–2·35], p<0·0001; ASA 3 vs ASA 1–2, 1·58, [1·30–1·92], p<0·0001]), surgical safety
checklist not used (1·39 [1·02–1·90], p=0·035), and ventilation or parenteral nutrition unavailable when needed
(ventilation 1·96, [1·41–2·71], p=0·0001; parenteral nutrition 1·35, [1·05–1·74], p=0·018). Administration of
parenteral nutrition (0·61, [0·47–0·79], p=0·0002) and use of a peripherally inserted central catheter (0·65
[0·50–0·86], p=0·0024) or percutaneous central line (0·69 [0·48–1·00], p=0·049) were associated with lower mortality.
Interpretation Unacceptable differences in mortality exist for gastrointestinal congenital anomalies between lowincome,
middle-income, and high-income countries. Improving access to quality neonatal surgical care in LMICs will
be vital to achieve Sustainable Development Goal 3.2 of ending preventable deaths in neonates and children younger
than 5 years by 2030
Identification and characterization of centromeric sequences in Xenopus laevis
Centromeres play an essential function in cell division by specifying the site of kinetochore formation on each chromosome for mitotic spindle attachment. Centromeres are defined epigenetically by the histone H3 variant Centromere Protein A (Cenpa). Cenpa nucleosomes maintain the centromere by designating the site for new Cenpa assembly after dilution by replication. Vertebrate centromeres assemble on tandem arrays of repetitive sequences, but the function of repeat DNA in centromere formation has been challenging to dissect due to the difficulty in manipulating centromeres in cells. Xenopus laevis egg extracts assemble centromeres in vitro, providing a system for studying centromeric DNA functions. However, centromeric sequences in Xenopus laevis have not been extensively characterized. In this study, we combine Cenpa ChIP-seq with a k-mer based analysis approach to identify the Xenopus laevis centromere repeat sequences. By in situ hybridization, we show that Xenopus laevis centromeres contain diverse repeat sequences, and we map the centromere position on each Xenopus laevis chromosome using the distribution of centromere-enriched k-mers. Our identification of Xenopus laevis centromere sequences enables previously unapproachable centromere genomic studies. Our approach should be broadly applicable for the analysis of centromere and other repetitive sequences in any organism
Recommended from our members
Distinguishing type 2 diabetes from type 1 diabetes in African American and Hispanic American pediatric patients.
ObjectiveTo test the hypothesis that clinical observations made at patient presentation can distinguish type 2 diabetes (T2D) from type 1 diabetes (T1D) in pediatric patients aged 2 to 18.Subjects and methodsMedical records of 227 African American and 112 Hispanic American pediatric patients diagnosed as T1D or T2D were examined to compare parameters in the two diseases. Age at presentation, BMI z-score, and gender were the variables used in logistic regression analysis to create models for T2D prediction.ResultsThe regression-based model created from African American data had a sensitivity of 92% and a specificity of 89%; testing of a replication cohort showed 91% sensitivity and 93% specificity. A model based on the Hispanic American data showed 92% sensitivity and 90% specificity. Similarities between African American and Hispanic American patients include: (1) age at onset for both T1D and T2D decreased from the 1980s to the 2000s; (2) risk of T2D increased markedly with obesity. Racial/ethnic-specific observations included: (1) in African American patients, the proportion of females was significantly higher than that of males for T2D compared to T1D (p<0.0001); (2) in Hispanic Americans, the level of glycated hemoglobin (HbA1c) was significantly higher in T1D than in T2D (p<0.002) at presentation; (3) the strongest contributor to T2D risk was female gender in African Americans, while the strongest contributor to T2D risk was BMI z-score in Hispanic Americans.ConclusionsDistinction of T2D from T1D at patient presentation was possible with good sensitivity and specificity using only three easily-assessed variables: age, gender, and BMI z-score. In African American pediatric diabetes patients, gender was the strongest predictor of T2D, while in Hispanic patients, BMI z-score was the strongest predictor. This suggests that race/ethnic specific models may be useful to optimize distinction of T1D from T2D at presentation
T2D Odd Ratios (95% confidence limits).
<p>T2D Odd Ratios (95% confidence limits).</p