2,736 research outputs found
Efficacy of intravenous sedation and oral nifedipine in dental implant patients with preoperative hypertension - a retrospective study of 516 cases
International audienceThis paper proposes a first attempt to define a two scales kinetic theory to describe concentrated suspensions involving short fibers, nano-fibers or nanotubes. In this case, fiber-fiber interactions can not be neglected and rich microstructures issued from these interactions can be observed, involving a diversity of fibers clusters or aggregates with complex kinematics, and different sizes and shapes. These clusters can interact to create larger clusters and also break because the flow induced hydrodynamic forces. In this paper we propose a double-scale model to describe such microstructure: at the finest scale we study the cluster kinematic based on the behaviour of the rods that constitute it, at a coarser scale, we use clusters distribution to derive the effect of the clusters presence on the suspensions properties
Fabrication of nanoscale gaps using a combination of self-assembled molecular and electron beam lithographic techniques
Copyright 2006 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in Applied Physics Letters, 88(22), 223111, 2006 and may be found at http://dx.doi.org/10.1063/1.220920
Reservoir Computing Approach to Robust Computation using Unreliable Nanoscale Networks
As we approach the physical limits of CMOS technology, advances in materials
science and nanotechnology are making available a variety of unconventional
computing substrates that can potentially replace top-down-designed
silicon-based computing devices. Inherent stochasticity in the fabrication
process and nanometer scale of these substrates inevitably lead to design
variations, defects, faults, and noise in the resulting devices. A key
challenge is how to harness such devices to perform robust computation. We
propose reservoir computing as a solution. In reservoir computing, computation
takes place by translating the dynamics of an excited medium, called a
reservoir, into a desired output. This approach eliminates the need for
external control and redundancy, and the programming is done using a
closed-form regression problem on the output, which also allows concurrent
programming using a single device. Using a theoretical model, we show that both
regular and irregular reservoirs are intrinsically robust to structural noise
as they perform computation
I-V characteristics of single electron tunneling from symmetric and asymmetric double-barrier tunneling junctions
Copyright 2007 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in Applied Physics Letters, 90(22), 223112, 2007 and may be found at http://dx.doi.org/10.1063/1.274525
Determination of association constants between 5 '-guanosine monophosphate gel and aromatic compounds by capillary electrophoresis
Hydro gel formed by 5'-guanosine monophosphate (GMP) in the presence of a potassium ion is expected to exhibit interesting selectivity in capillary electrophoretic separations. Here, we estimated the conditional association constants between the hydro gel (G-gel) and aromatic compounds by capillary electrophoresis in order to investigate the separation selectivity that is induced by the G-gel. Several aromatic compounds were separated in a solution containing GMP and potassium ion at different concentrations. The association constants were calculated by correlating the electrophoretic mobilities of the analytes obtained experimentally using a concentration of G-gel. During semi-quantitative estimation, naphthalene derivatives had larger association constants (K-ass = 10.3-16.8) compared with those of benzene derivatives (K-ass = 3.91-5.31), which means that the binding sites of G-gel match better to a naphthalene ring than to a benzene ring. A hydrophobic interaction was also found when the association constants for alkyl resorcinol were compared with those of different hydrocarbon chains. The association constants of nucleobases and tryptophan ranged from 6.05 to 12.6, which approximated the intermediate values between benzene and naphthalene derivatives. Consequently, the selective interaction between G-gel and aromatic compounds was classified as one of three types: (1) an intercalation into stacked planar GMP tetramers; (2) a hydrophobic interaction with a long alkyl chain; or, (3) a small contribution of steric hindrance and/or hydrogen bonding with functional groups such as amino and hydroxyl groups
- …
