3 research outputs found
Use of Phage Display to Isolate Specifi c Human Monoclonal Antibody Fragments Against a Potential Target for Multiple Myeloma
Introduction: Multiple myeloma (MM), a malignancy of plasma cells, accounts for 10% of all haematological malignancies and is currently incurable. Although it can be treated, the disease tends to relapse after several years and becomes increasingly resistant to conventional therapy. Investigations into using humoral therapy for MM are now underway with a view that novel therapeutic agents may provide a more targeted therapy for MM.
Materials and Methods: Here, phage display, a faster and more efficient method compared to classical hybridoma fusion technology, was used as a proof-of-concept to isolate several single-chain Fragment variables (scFv) against Ku86.
Results: Anti-Ku86 polyclonal scFvs biopanning was successful where third round scFvs (A450~1.1) showed a 1/3 increase in binding as compared to the first round scFvs (A450~0.4) with 100ug/mL of antigen (purified human Ku86). Subsequent selection and verifi cation of monoclonal antibodies using third round biopanning revealed 4 good affi nity binding clones ranging from A450~0.1 to A450~0.15 on 12.5ug/mL of antigen as compared to low binders (A450~0.07) and these antibodies bind to Ku86 in a specifi c and dose-dependent manner. Comparative studies were also performed with commercially available murine antibodies and results suggest that 2 of the clones may bind close to the following epitopes aa506-541 and aa1- 374.
Conclusions: These studies using phage display provide an alternative and viable method to screen for antibodies quickly and results show that good affinity antibodies against Ku86 have been successfully isolated and they can be used for further studies on MM and form the basis for further development as anti-cancer therapeutic agents
The biology of Ku and its potential oncogenic role in cancer
Ku is a heterodimeric protein made up of two subunits, Ku70 and Ku80. It was originally identified as an autoantigen recognized by the sera of patients with autoimmune diseases. It is a highly versatile regulatory protein that has been implicated in multiple nuclear processes, e.g., DNA repair, telomere maintenance and apoptosis. Accordingly, Ku is thought to play a crucial role in maintenance of chromosomal integrity and cell survival. Recent reports suggest that there is a positive relationship between Ku and the development of cancer, making Ku an important candidate target for anticancer drug development. Specifically, prior studies suggest that a delicate balance exists in Ku expression, as overexpression of Ku proteins promotes oncogenic phenotypes, including hyperproliferation and resistance to apoptosis; whereas deficient or low expression of Ku leads to genomic instability and tumorigenesis. Such observations through various experimental models indicate that Ku may act as either a tumor suppressor or an oncoprotein. Hence, understanding the link between the various functions of Ku and the development of cancer in different cell systems may help in the development of novel anticancer therapeutic agents that target Ku. These studies may also increase our understanding of how Ku autoantibodies are generated in autoimmune diseases