7,678 research outputs found
Finite Temperature Casimir Effect and Dispersion in the Presence of Compactified Extra Dimensions
Finite temperature Casimir theory of the Dirichlet scalar field is developed,
assuming that there is a conventional Casimir setup in physical space with two
infinitely large plates separated by a gap R and in addition an arbitrary
number q of extra compacified dimensions. As a generalization of earlier
theory, we assume in the first part of the paper that there is a scalar
'refractive index' N filling the whole of the physical space region. After
presenting general expressions for free energy and Casimir forces we focus on
the low temperature case, as this is of main physical interest both for force
measurements and also for issues related to entropy and the Nernst theorem.
Thereafter, in the second part we analyze dispersive properties, assuming for
simplicity q=1, by taking into account dispersion associated with the first
Matsubara frequency only. The medium-induced contribution to the free energy,
and pressure, is calculated at low temperatures.Comment: 25 pages, one figure. Minor changes in the discussion. Version to
appear in Physica Script
The Multicomponent KP Hierarchy: Differential Fay Identities and Lax Equations
In this article, we show that four sets of differential Fay identities of an
-component KP hierarchy derived from the bilinear relation satisfied by the
tau function of the hierarchy are sufficient to derive the auxiliary linear
equations for the wave functions. From this, we derive the Lax representation
for the -component KP hierarchy, which are equations satisfied by some
pseudodifferential operators with matrix coefficients. Besides the Lax
equations with respect to the time variables proposed in \cite{2}, we also
obtain a set of equations relating different charge sectors, which can be
considered as a generalization of the modified KP hierarchy proposed in
\cite{3}.Comment: 19 page
Nonexistence theorems for traversable wormholes
Gauss-Bonnet formula is used to derive a new and simple theorem of
nonexistence of vacuum static nonsingular lorentzian wormholes. We also derive
simple proofs for the nonexistence of lorentzian wormhole solutions for some
classes of static matter such as, for instance, real scalar fields with a
generic potential obeying and massless fermions fields
Casimir effect of electromagnetic field in Randall-Sundrum spacetime
We study the finite temperature Casimir effect on a pair of parallel
perfectly conducting plates in Randall-Sundrum model without using scalar field
analogy. Two different ways of interpreting perfectly conducting conditions are
discussed. The conventional way that uses perfectly conducting condition
induced from 5D leads to three discrete mode corrections. This is very
different from the result obtained from imposing 4D perfectly conducting
conditions on the 4D massless and massive vector fields obtained by decomposing
the 5D electromagnetic field. The latter only contains two discrete mode
corrections, but it has a continuum mode correction that depends on the
thicknesses of the plates. It is shown that under both boundary conditions, the
corrections to the Casimir force make the Casimir force more attractive. The
correction under 4D perfectly conducting condition is always smaller than the
correction under the 5D induced perfectly conducting condition. These
statements are true at any temperature.Comment: 20 pages, 4 figure
Impaired interferon-γ responses, increased interleukin-17 expression, and a tumor necrosis factor–α transcriptional program in invasive aspergillosis
This article is available open access through the publisher’s website. Copyright @ 2009 Oxford University Press.Background - Invasive aspergillosis (IA) is the most common cause of death associated with fungal infection in the developed world. Historically, susceptibility to IA has been associated with prolonged neutropenia; however, IA has now become a major problem in patients on calcineurin inhibitors and allogenic hematopoetic stem cell transplant patients following engraftment. These observations suggest complex cellular mechanisms govern immunity to IA. Methods - To characterize the key early events that govern outcome from infection with Aspergillus fumigatus we performed a comparative immunochip microarray analysis of the pulmonary transcriptional response to IA between cyclophosphamide-treated mice and immunocompetent mice at 24 h after infection. Results - We demonstrate that death due to infection is associated with a failure to generate an incremental interferon-γ response, increased levels of interleukin-5 and interleukin-17a transcript, coordinated expression of a network of tumor necrosis factor–α-related genes, and increased levels of tumor necrosis factor–α. In contrast, clearance of infection is associated with increased expression of a number genes encoding proteins involved in innate pathogen clearance, as well as apoptosis and control of inflammation. Conclusion - This first organ-level immune response transcriptional analysis for IA has enabled us to gain new insights into the mechanisms that govern fungal immunity in the lung.The BBSRC, CGD Research Trust, and the MRC
The Casimir effect for parallel plates at finite temperature in the presence of one fractal extra compactified dimension
We discuss the Casimir effect for massless scalar fields subject to the
Dirichlet boundary conditions on the parallel plates at finite temperature in
the presence of one fractal extra compactified dimension. We obtain the Casimir
energy density with the help of the regularization of multiple zeta function
with one arbitrary exponent and further the renormalized Casimir energy density
involving the thermal corrections. It is found that when the temperature is
sufficiently high, the sign of the Casimir energy remains negative no matter
how great the scale dimension is within its allowed region. We derive
and calculate the Casimir force between the parallel plates affected by the
fractal additional compactified dimension and surrounding temperature. The
stronger thermal influence leads the force to be stronger. The nature of the
Casimir force keeps attractive.Comment: 14 pages, 2 figure
Spin texture on the Fermi surface of tensile strained HgTe
We present ab initio and k.p calculations of the spin texture on the Fermi
surface of tensile strained HgTe, which is obtained by stretching the
zincblende lattice along the (111) axis. Tensile strained HgTe is a semimetal
with pointlike accidental degeneracies between a mirror symmetry protected
twofold degenerate band and two nondegenerate bands near the Fermi level. The
Fermi surface consists of two ellipsoids which contact at the point where the
Fermi level crosses the twofold degenerate band along the (111) axis. However,
the spin texture of occupied states indicates that neither ellipsoid carries a
compensating Chern number. Consequently, the spin texture is locked in the
plane perpendicular to the (111) axis, exhibits a nonzero winding number in
that plane, and changes winding number from one end of the Fermi ellipsoids to
the other. The change in the winding of the spin texture suggests the existence
of singular points. An ordered alloy of HgTe with ZnTe has the same effect as
stretching the zincblende lattice in the (111) direction. We present ab initio
calculations of ordered Hg_xZn_1-xTe that confirm the existence of a spin
texture locked in a 2D plane on the Fermi surface with different winding
numbers on either end.Comment: 8 pages, 8 figure
Topological Defects and Gapless Modes in Insulators and Superconductors
We develop a unified framework to classify topological defects in insulators
and superconductors described by spatially modulated Bloch and Bogoliubov de
Gennes Hamiltonians. We consider Hamiltonians H(k,r) that vary slowly with
adiabatic parameters r surrounding the defect and belong to any of the ten
symmetry classes defined by time reversal symmetry and particle-hole symmetry.
The topological classes for such defects are identified, and explicit formulas
for the topological invariants are presented. We introduce a generalization of
the bulk-boundary correspondence that relates the topological classes to defect
Hamiltonians to the presence of protected gapless modes at the defect. Many
examples of line and point defects in three dimensional systems will be
discussed. These can host one dimensional chiral Dirac fermions, helical Dirac
fermions, chiral Majorana fermions and helical Majorana fermions, as well as
zero dimensional chiral and Majorana zero modes. This approach can also be used
to classify temporal pumping cycles, such as the Thouless charge pump, as well
as a fermion parity pump, which is related to the Ising non-Abelian statistics
of defects that support Majorana zero modes.Comment: 27 pages, 15 figures, Published versio
- …