284 research outputs found
Syntactic Control of Interference Revisited
In Syntactic Control of Interference (POPL, 1978), J. C. Reynolds proposes three design principles intended to constrain the scope of imperative state effects in Algol-like languages. The resulting linguistic framework seems to be a very satisfactory way of combining functional and imperative concepts, having the desirable attributes of both purely functional languages (such as pcf) and simple imperative languages (such as the language of while programs). However, Reynolds points out that the obvious syntax for interference control has the unfortunate property that fi-reductions do not always preserve typings. Reynolds has subsequently presented a solution to this problem (ICALP, 1989), but it is fairly complicated and requires intersection types in the type system. Here, we present a much simpler solution which does not require intersection types. We first describe a new type system inspired in part by linear logic and verify that reductions preserve typings. We then define a class of bireflective models, which provide a categorical analysis of structure underlying the new typing rules; a companion paper Bireflectivity, in this volume, exposes wider ramifications of this structure. Finally, we describe a concrete model for an illustrative programming language based on the new type system; this improves on earlier such efforts in that states are not assumed to be structured using locations
Polyura inopinatus Röber, 1940; a remarkable butterfly mystery resolved
The most distinctive species of Polyura, P. inopinatus, described from a single specimen said to be from North Sulawesi, Indonesia, has been a great mystery since it was first described by Röber, in 1940. The holotype, originally illustrated in monochrome in the journal Deutsche Entomologische Zeitschrift, Iris, was lost very soon after it was described, almost certainly destroyed during allied bombing of Dresden in the 1940s. No other specimen was known for almost eight decades. We suggest that the type locality (Sulawesi) is incorrect and that the holotype was more likely to have been collected in the Baining Mountains, East New Britain Province, Papua New Guinea. We report the recent discovery of several male P. inopinatus from West New Britain Province, and describe and illustrate specimens. A neotype is designated
Universal neural field computation
Turing machines and G\"odel numbers are important pillars of the theory of
computation. Thus, any computational architecture needs to show how it could
relate to Turing machines and how stable implementations of Turing computation
are possible. In this chapter, we implement universal Turing computation in a
neural field environment. To this end, we employ the canonical symbologram
representation of a Turing machine obtained from a G\"odel encoding of its
symbolic repertoire and generalized shifts. The resulting nonlinear dynamical
automaton (NDA) is a piecewise affine-linear map acting on the unit square that
is partitioned into rectangular domains. Instead of looking at point dynamics
in phase space, we then consider functional dynamics of probability
distributions functions (p.d.f.s) over phase space. This is generally described
by a Frobenius-Perron integral transformation that can be regarded as a neural
field equation over the unit square as feature space of a dynamic field theory
(DFT). Solving the Frobenius-Perron equation yields that uniform p.d.f.s with
rectangular support are mapped onto uniform p.d.f.s with rectangular support,
again. We call the resulting representation \emph{dynamic field automaton}.Comment: 21 pages; 6 figures. arXiv admin note: text overlap with
arXiv:1204.546
Unraveling the directional link between adiposity and inflammation: a bidirectional mendelian randomization approach
<b>Context</b>: Associations between adiposity and circulating inflammation markers are assumed to be causal, although the direction of the relationship has not been proven.
<b>Objective</b>: The aim of the study was to explore the causal direction of the relationship between adiposity and inflammation using a bidirectional Mendelian randomization approach.
<b>Methods</b>: In the PROSPER study of 5804 elderly patients, we related C-reactive protein (CRP) single nucleotide polymorphisms (SNPs) (rs1800947 and rs1205) and adiposity SNPs (FTO and MC4R) to body mass index (BMI) as well as circulating levels of CRP and leptin. We gave each individual two allele scores ranging from zero to 4, counting each pair of alleles related to CRP levels or BMI.
<b>Results</b>: With increasing CRP allele score, there was a stepwise decrease in CRP levels (P for trend < 0.0001) and a 1.98 mg/liter difference between extremes of the allele score distribution, but there was no associated change in BMI or leptin levels (P ≥ 0.89). By contrast, adiposity allele score was associated with 1) an increase in BMI (1.2 kg/m2 difference between extremes; P for trend 0.002); 2) an increase in circulating leptin (5.77 ng/ml difference between extremes; P for trend 0.0027); and 3) increased CRP levels (1.24 mg/liter difference between extremes; P for trend 0.002).
<b>Conclusions</b>: Greater adiposity conferred by FTO and MC4R SNPs led to higher CRP levels, with no evidence for any reverse pathway. Future studies should extend our findings to other circulating inflammatory parameters. This study illustrates the potential power of Mendelian randomization to dissect directions of causality between intercorrelated metabolic factors
Neutrino Detection with Inclined Air Showers
The possibilities of detecting high energy neutrinos through inclined showers
produced in the atmosphere are addressed with an emphasis on the detection of
air showers by arrays of particle detectors. Rates of inclined showers produced
by both down-going neutrino interactions and by up-coming decays from
earth-skimming neutrinos as a function of shower energy are calculated with
analytical methods using two sample neutrino fluxes with different spectral
indices. The relative contributions from different flavors and charged, neutral
current and resonant interactions are compared for down-going neutrinos
interacting in the atmosphere. No detailed description of detectors is
attempted but rough energy thresholds are implemented to establish the ranges
of energies which are more suitable for neutrino detection through inclined
showers. Down-going and up-coming rates are compared.Comment: Submitted to New Journal of Physic
The Sheaf-Theoretic Structure Of Non-Locality and Contextuality
We use the mathematical language of sheaf theory to give a unified treatment
of non-locality and contextuality, in a setting which generalizes the familiar
probability tables used in non-locality theory to arbitrary measurement covers;
this includes Kochen-Specker configurations and more. We show that
contextuality, and non-locality as a special case, correspond exactly to
obstructions to the existence of global sections. We describe a linear
algebraic approach to computing these obstructions, which allows a systematic
treatment of arguments for non-locality and contextuality. We distinguish a
proper hierarchy of strengths of no-go theorems, and show that three leading
examples --- due to Bell, Hardy, and Greenberger, Horne and Zeilinger,
respectively --- occupy successively higher levels of this hierarchy. A general
correspondence is shown between the existence of local hidden-variable
realizations using negative probabilities, and no-signalling; this is based on
a result showing that the linear subspaces generated by the non-contextual and
no-signalling models, over an arbitrary measurement cover, coincide. Maximal
non-locality is generalized to maximal contextuality, and characterized in
purely qualitative terms, as the non-existence of global sections in the
support. A general setting is developed for Kochen-Specker type results, as
generic, model-independent proofs of maximal contextuality, and a new
combinatorial condition is given, which generalizes the `parity proofs'
commonly found in the literature. We also show how our abstract setting can be
represented in quantum mechanics. This leads to a strengthening of the usual
no-signalling theorem, which shows that quantum mechanics obeys no-signalling
for arbitrary families of commuting observables, not just those represented on
different factors of a tensor product.Comment: 33 pages. Extensively revised, new results included. Published in New
Journal of Physic
Validation of the western ontario rotator cuff index in patients with arthroscopic rotator cuff repair: A study protocol
<p>Abstract</p> <p>Background</p> <p>Arthroscopic rotator cuff repair is described as being a successful procedure. These results are often derived from clinical general shoulder examinations, which are then classified as 'excellent', 'good', 'fair' or 'poor'. However, the cut-off points for these classifications vary and sometimes modified scores are used.</p> <p>Arthroscopic rotator cuff repair is performed to improve quality of life. Therefore, disease specific health-related quality of life patient-administered questionnaires are needed. The WORC is a quality of life questionnaire designed for patients with disorders of the rotator cuff. The score is validated for rotator cuff disease, but not for rotator cuff repair specifically.</p> <p>The aim of this study is to investigate reliability, validity and responsiveness of WORC in patients undergoing arthroscopic rotator cuff repair.</p> <p>Methods/Design</p> <p>An approved translation of the WORC into Dutch is used. In this prospective study three groups of patients are used: 1. Arthroscopic rotator cuff repair; 2. Disorders of the rotator cuff without rupture; 3. Shoulder instability.</p> <p>The WORC, SF-36 and the Constant Score are obtained twice before therapy is started to measure reliability and validity. Responsiveness is tested by obtaining the same tests after therapy.</p
- …