1,165 research outputs found

    FOULING AND ITS MITIGATION ON HEAT EXCHANGER SURFACES BY ADDITIVES AND CATALYTIC MATERIALS

    Get PDF
    Calcium carbonate (CaCO3) fouling is the most commonly observed fouling phenomenon in cooling water applications. Fouling happens when a process uses cooling water supersaturated with mineral salt crystals (i.e. hard water). Precipitation deposits on heat transfer surfaces whenever these inversely-soluble salt crystals, like dissolved calcium ions, are exposed to high temperature. An online-monitoring system for fouling phenomena was studied experimentally using a mixture of sodium bicarbonate and calcium chloride for carbonate fouling salt in de-ionized water. The effects of different parameters such as surface temperature, flow velocity, and concentration on the calcium carbonate scale formation process were experimentally investigated by using the developed monitoring system. The calcium carbonate deposition rates on five different metal surfaces (Stainless steel 316, brass, copper, aluminum and carbon steel) were investigated. The surface was analyzed by analytical microscopy to investigate the morphology of the deposit layer. The results revealed that SS316 yielded the lowest deposition on the surface. Nowadays, hazardous chemical additives are often used to mitigate fouling but chemicals are expensive and pose problems to the environment. Physical water treatment (PWT), a non-chemical method is good alternative for fouling mitigation method. PWT using zinc and tourmaline as catalytic materials is presented in this research work. Fouling tests were conducted for verification of this PWT method. Artificially-hardened water at 300 mgL-1 was utilized as the fluid medium to form fouling deposits. The hard water flow velocities were varied from 0.15 ms-1 to 0.45 ms-1 and the artificially-hardened water temperature was maintained at 25 oC and the experimental time was set to 72 hours for each run. The results revealed that in the PWT-treatment case, the deposition of calcium carbonate particle is lower compared to those in the No-treatment case. Furthermore, mitigation of calcium carbonate fouling by applying EDTA, EDTA-MWCNT and DTPA-MWCNT-based water nanofluids on heat exchanger surfaces were reported. Investigation of additive (benign to the environment) on the fouling rate of deposition was performed. Assessment of the deposition of calcium carbonate on the heat exchanger surfaces with respect to the inhibition of crystal growth was conducted by Scanning Electron Microscope (SEM). The results showed that the formation of calcium carbonate crystals can be retarded significantly by adding MWCNT-DTPA additives as inhibition in the solution. Moreover, investigation was extended by introducing a non-invasive-monitoring of concentrations of calcium hardness in cooling water. Investigation was conducted with a 2.5 GHz microwave cavity resonator. The principle of electric dipole moment theories were used to analyse the sample solution that occurs as a function of calcium ion content. The sample was centrally positioned in the electric field of the TM010 mode of a resonant cylindrical cavity. COMSOL simulation package was used to compare and validate the experimental cavity resonator frequency. Transmission signal (S21) measurements via Vector Network Analyser (VNA) with different concentrations were investigated and observed linear relationship in amplitude with frequency changes. These research successfully introduce a novel technique of monitoring of water hardness concentration by using non-invasive microwave sensor

    Industrial Heat Exchanger: Operation and Maintenance to Minimize Fouling and Corrosion

    Get PDF
    Heat exchanger is equipment used to transfer heat from one fluid to another. It has extensive domestic and industrial applications. Extensive technical literature is available on heat exchanger design, operation and maintenance, but it is widely scattered throughout the industrial bulletins, industrial design codes and standard, technical journals, etc. The purpose of this book chapter is to consolidate into basic background and concepts design of heat exchangers, operation, cleaning and green technology maintenance on heat exchanger closely related to the industrial practices

    Non-destructive Electromagnetic Wave Sensor for Hazardous Biological Materials

    Get PDF
    A novel non-destructive electromagnetic wave (EM) sensor for rapid identification of biological material is presented in this paper. Biological treats could be defined as biological agents such as bacteria spores, viruses and toxins. Spores can disable or kill people, animals and crops. Therefore, it is important to identify the hazard in rapid and non destructive manner to make a safer environment. In this research, a 2.45 GHz microwave resonator was used to detect the dipliconic acid (DPA), which is the bio-maker of bacillus spores. A promising results were obtained by detecting the DPA from 0.001M ā€“ 0.3M concentration at frequency of 2.4 GHz, which are the fundamental mode (TM101) of the designed cavity. In addition, different species of bacillus spores was detected at frequency approximate at 2.36 GHz. The results concluded that electromagnetic wave sensors may have the potential for use as a non-destructive and real time sensor to detect bacillus spores. The EM principle could be extended to detect different hazardous biological materials by identify the ā€œfinger printā€ of specific biological materials on different surfaces

    A modeling study on the response of Chesapeake Bay to hurricane events of Floyd and Isabel

    Get PDF
    The response of Chesapeake Bay to forcing from two hurricanes is investigated using an unstructured-grid three-dimensional hydrodynamic model SELFE. The model domain includes Chesapeake Bay, its tributaries, and the extended continental shelf in the mid-Atlantic Bight. The hurricanes chosen for the study are Hurricane Floyd (1999) and Hurricane Isabel (2003), both of which made landfall within 100 km of the mouth of the Bay. The model results agree reasonably well with field observations of water level, velocity, and salinity. From the Bay\u27s water level response to the hurricanes, it was found that the storm surge in the Bay has two distinct stages: an initial stage set up by the remote winds and the second stage - a primary surge induced by the local winds. For the initial stage, the rising of the coastal sea level was setup by the remote wind of both hurricanes similarly, but for the second stage, the responses to the two hurricanes\u27 local winds are significantly different. Hurricane Floyd was followed by down-Bay winds that canceled the initial setup and caused a set-down from the upper Bay. Hurricane Isabel, on the other hand, was followed by up-Bay winds, which reinforced the initial setup and continued to rise up against the head of the Bay. From the perspective of volume and salt fluxes, it is evident that an oceanic saltwater influx is pushed into the Bay from the continental shelf by the remote wind fields in the initial stages of the storm surge for both Floyd and Isabel. In the second stage after the hurricane made landfall, the Bay\u27s local wind plays a key role in modulating the salinity and velocity fields through vertical mixing and longitudinal salt transport. Controlled numerical experiments are conducted in order to identify and differentiate the roles played by the local wind in stratified and destratified conditions. Down-estuary local wind stress (of Hurricane Floyd-type) tends to enhance stratification under moderate winds, but exhibits an increasing-then-decreasing stage when the wind stress increases. The up-estuary local wind stress (of Hurricane Isabel-type) tends to penetrate deeper into the water column, which reduces stratification by reversing gravitational circulation. To characterize mixing conditions in the estuary, a modified horizontal Richardson number that incorporates wind stress, wind direction, horizontal salinity gradient, and vertical eddy viscosity is used for both hurricanes. Finally, the direct precipitation of rainfall into the Bay during Hurricane Floyd appears to create not only a thin surface layer of low salinity but also a seaward barotropic pressure gradient that affects the subsequent redistribution of salinity after the storm. (C) 2012 Elsevier Ltd. All rights reserved

    Comparative evaluation of a point-of-care immunochromatographic test SNAP 4Dx with molecular detection tests for vector-borne canine pathogens in Hong Kong

    Get PDF
    There are no comprehensive studies on the performance of commonly used point-of-care diagnostic enzyme immunoassay for common arthropod-borne canine pathogens. A comparative evaluation of an immunochromatographic test for these infections with a comprehensive polymerase chain reaction (PCR) test panel was performed on 100 pet dogs and 100 stray dogs without obvious clinical symptoms. Of the 162 positive test results from both immunochromatographic test and PCR, there was 85.2% concordance. The 24 discordant results between serology and PCR occurred in tests involving Ehrlichia canis (14) and Anaplasma platys (10), which may be related to the time of infection. No positive cases of borreliosis or rickettsiosis were detected. One important limitation of the immunochromatographic test was its lack of testing for babesiosis and hepatozoonosis. The former is the most prevalent arthropod-borne canine infection in our cohort (41%). Coinfections were found in 19% stray dogs and 6% of pet dogs with both tests (p<0.01). Seventeen and 8 samples from stray and pet dogs, respectively, were initially positive in the PCR test for Ehrlichia. However, on sequencing of the PCR amplicon, 10 from stray and 2 from pet dogs were found to be Wolbachia sequences instead, with 100% nucleotide identity to the 16S rRNA sequence of Wolbachia endosymbiont of Dirofilaria immitis. The presence of Wolbachia DNAemia (6%) correlated well with the molecular test and immunochromatographic antigen test for D. immitis. Ā© Copyright 2011, Mary Ann Liebert, Inc.published_or_final_versio

    Numerical Investigation on Using an Electromagnetic Wave Sensor to Detect Water Hardness in Water Cooling System Industry

    Get PDF
    Numerical study of using novel electromagnetic wave technique to detect water hardness concentration has been presented in this paper. Simulation is powerful and efficient engineering methods which allows for a quick and accurate prediction of various engineering problems. The RF module is used in this research to predict and design electromagnetic wave propagation and resonance effects of a guided wave to detect water hardness concentration in term of frequency domain, eigenfrequency and mode analysis. A cylindrical cavity resonator is simulated and designed in the electric field of fundamental mode (TM010). With the finite volume method, the three-dimensional governing equations were discretized. Boundary conditions for the simulation were the cavity materials as aluminum, two ports which include transmitting and receiving port, and assumption of vacuum inside the cavity. The designed model was success to simulate a fundamental mode and extract S21 transmission signal within 2.1 GHz ā€“ 2.8 GHz regions. The signal spectrum under effects of port selection technique and dielectric properties of different water concentration were studied. It is observed that the linear reduction of magnitude in frequency domain when concentration increase. The numerical results were validated closely by the experimental available data. Hence, conclusion of the available COMSOL simulation package is capable of providing acceptable data for microwave research

    Retardation of heat exchanger surfaces mineral fouling by water-based diethylenetriamine pentaacetate-treated CNT nanofluids

    Get PDF
    Mineral scale deposition on heat exchanging surfaces increases the thermal resistance and reduces the operating service life. The effect is usually intensified at higher temperatures due to the inverse temperature solubility characteristics of some minerals in the cooling water. Scale formation build up when dissolved salt crystallize from solution onto the heated surface, forming an adherent deposit. It is very important for heat transfer applications to cope with the fouling problems in industry. In this present study, a set of fouling experiments was conducted to evaluate the mitigation of calcium carbonate scaling by applying DTPA-treated MWCNT-based water nanofluids on heat exchanger surfaces. Investigation of additive DTPA-treated MWCNT-based water nanofluids (benign to the environment) on fouling rate of deposition was performed. 300 mg Lāˆ’1 of artificially-hardened calcium carbonate solution was prepared as a fouling solution for deposit analysis. Assessment of the deposition of calcium carbonate on the heat exchanger surface with respect to the inhibition of crystal growth was conducted by Scanning Electron Microscope (SEM). The results showed that the formation of calcium carbonate crystals can be retarded significantly by adding MWCNT-DTPA additives as inhibition in the solution

    Improving biodiesel yield of animal waste fats by combination of a pre-treatment technique and microwave technology Renewable Energy

    Get PDF
    Recently, due to its low cost there has been increased attention on Animal Waste Fats (AWFs) as a feedstock for biodiesel production. Advanced microwave technology has also been reported by many researchers to enhance the transesterification in biodiesel production. However, esterification of free fatty acids in the feedstock reported here has not attracted so much attention. AWFs come with its challenges namely, high free fatty acid (FFA) content and high water content. This study utilizes AWFs (tallow) containing very large amount of FFA; (25wt.%, 18 wt.%, and 9.4 wt.% FFA/AWFs) as feedstock for fatty acid methyl ester (FAME) production. A simple thermal pre-treatment technique followed microwave assisted esterification with methanol (MeOH) was conducted in a batch process to reduce the FFA content to as low as 1wt.% FFA, which is then suitable for the alkaline transesterification process. The pre-treatment of AWFs at 88Ā°C to first reduce water and decrease viscosity, followed by an operating microwave power of 70W producing a power density 1.147mW/m3, achieved a 15% increase in reduction of FFA over 30W microwave power and conventional thermal method. Under optimum conditions, using 2.0 wt.wt% sulphuric acid catalyst/AWFs and 1:6 molar ratio AWF/MeOH, the FFA conversion of 93wt. % was achieved. The results indicated that the pre-treatment and microwave application provided a faster route to high FFA reduction of AWFs during esterification process. The proposed technology is promising for the potential scale up industrial application

    First isolation of West Nile virus from a dromedary camel

    Get PDF
    published_or_final_versio

    Embedded Smart Antenna for Nondestructive Testing and Evaluation (NDT&E) of Moisture Content and Deterioration in Concrete

    Get PDF
    Concrete failure will lead to serious safety precautions in wall performance of a building structure. It is one of the biggest challenges for engineers to inspect and maintain the quality of concrete throughout the service years in order to prevent structural deterioration. Up to date, a lot of research is ongoing to develop different instruments to inspect concrete quality. Detection of moisture ingress is important in structural monitoring of concrete. This paper presents a novel sensing technique using smart antenna for nondestructive evaluation of moisture content and deterioration inspection in concrete blocks. Two different standard concrete samples (United Kingdom and Malaysia) were investigated in this research. Electromagnetic (EM) sensor was designed and embedded inside the concrete to detect the moisture content in structures. In addition, Computer Simulation Technology (CST) software was used to validate the theoretical model of EM sensor against the test data. The results demonstrated that EM sensor at 2.45 GHz frequency is capable to detect the moisture content in concrete with linear regression of R2=0.9752. Furthermore, identification of different mix ratio of concrete were successfully demonstrated in this paper. In conclusion, EM sensor is capable of detecting moisture content in non-destructive manner and could be a potential technique for maintenance and quality control of the building performance
    • ā€¦
    corecore