129 research outputs found
The Kepler Pixel Response Function
Kepler seeks to detect sequences of transits of Earth-size exoplanets
orbiting Solar-like stars. Such transit signals are on the order of 100 ppm.
The high photometric precision demanded by Kepler requires detailed knowledge
of how the Kepler pixels respond to starlight during a nominal observation.
This information is provided by the Kepler pixel response function (PRF),
defined as the composite of Kepler's optical point spread function, integrated
spacecraft pointing jitter during a nominal cadence and other systematic
effects. To provide sub-pixel resolution, the PRF is represented as a
piecewise-continuous polynomial on a sub-pixel mesh. This continuous
representation allows the prediction of a star's flux value on any pixel given
the star's pixel position. The advantages and difficulties of this polynomial
representation are discussed, including characterization of spatial variation
in the PRF and the smoothing of discontinuities between sub-pixel polynomial
patches. On-orbit super-resolution measurements of the PRF across the Kepler
field of view are described. Two uses of the PRF are presented: the selection
of pixels for each star that maximizes the photometric signal to noise ratio
for that star, and PRF-fitted centroids which provide robust and accurate
stellar positions on the CCD, primarily used for attitude and plate scale
tracking. Good knowledge of the PRF has been a critical component for the
successful collection of high-precision photometry by Kepler.Comment: 10 pages, 5 figures, accepted by ApJ Letters. Version accepted for
publication
Surface Biology & Geology Pathfinder Data Analysis Pipeline
NASA's future global orbital mission, currently in development as the Surface Biology and Geology (SBG) Designated Observable study, will acquire relatively high resolution solar-reflected spectroscopy and thermal infrared observations. Innovative processes must be utilized for handling the high volume of data anticipated to be collected, which is anticipated to exceed 100 terabytes/day, greater than NASA's total extant airborne hyperspectral data collection. Collecting, processing/re-processing, disseminating, and exploiting this volume of data presents new challenges. To begin addressing them, NASA is drawing upon the expertise developed from its astrophysics programs to address Earth science and applications. Specifically, NASA is adapting the science processing operations technology developed for the Kepler and TESS planet-hunting missions for imaging spectroscopy data processing. This technology development has been the foundation for the remarkable scientific successes of Kepler and TESS. The Kepler/TESS data processing technology provides a scalable architecture for robust, repeatable, and replicable science and application products while enabling the Earth science community to develop, test, and implement new algorithms. Our effort to leverage this existing capability has begun by ingesting data and applying workflows from the EO-1/Hyperion 17-year mission archive that provides globally sampled visible through shortwave infrared spectra that are representative of SBG data types and volumes. This pathfinding data processing system will help define the solutions to processing SBG data volumes and will enable the scientific community to interact with the data and processing pipeline to create new science products
Back to the Future: Surveying the Northern Hemisphere and Reprocessing the Southern TESS Data Set
TESS launched 18 April 2018 to conduct a two-year, near all-sky survey for at least 50 small, nearby exoplanets for which masses can be ascertained and whose atmospheres can be characterized by ground- and space-based follow-on observations. TESS has completed its survey of the southern hemisphere and begun its survey of the northern hemisphere, identifying >1000 candidate exoplanets and unveiling a plethora of exciting non-exoplanet astrophysics results, such as asteroseismology, asteroids, and supernova. The TESS Science Processing Operations Center (SPOC) processes the data downlinked every two weeks to generate a range of data products hosted at the Mikulski Archive for Space Telescopes (MAST). For each sector (~1 month) of observations, the SPOC calibrates the image data for both 30-min Full Frame Images (FFIs) and up to 20,000 pre-selected 2-min target star postage stamps. Data products for the 2-min targets include simple aperture photometry and systematic error-corrected flux time series. The SPOC also conducts searches for transiting exoplanets in the 2-min data for each sector and generates Data Validation time series and associated reports for each transit-like feature identified in the search. Multi-sector searches for exoplanets are conducted periodically to discover longer period planets, including those in the James Webb Continuous Viewing Zone (CVZ), which are observed for up to one year. Starting with Sector 8, scattered light from the Earth and Moon contaminated significant portions of the data in each orbit. We have developed algorithms for automated identification of the scattered light features at the individual target level. Previously, data for all stars on a CCD affected by scattered light were manually excluded. The automated flagging will allow us to retain significantly more data for stars that are not affected by the scattered light even though it is occurring elsewhere on the CCD. We also discuss enhancements to the SPOC pipeline and the newly available FFI light curves. The TESS Mission is funded by NASA's Science Mission Directorate as an Astrophysics Explorer Mission
The Revised TESS Input Catalog and Candidate Target List
We describe the catalogs assembled and the algorithms used to populate the
revised TESS Input Catalog (TIC), based on the incorporation of the Gaia second
data release. We also describe a revised ranking system for prioritizing stars
for 2-minute cadence observations, and assemble a revised Candidate Target List
(CTL) using that ranking. The TIC is available on the Mikulski Archive for
Space Telescopes (MAST) server, and an enhanced CTL is available through the
Filtergraph data visualization portal system at the URL
http://filtergraph.vanderbilt.edu/tess_ctl.Comment: 30 pages, 16 figures, submitted to AAS Journals; provided to the
community in advance of publication in conjunction with public release of the
TIC/CTL on 28 May 201
Overview of the Kepler Science Processing Pipeline
The Kepler Mission Science Operations Center (SOC) performs several critical
functions including managing the ~156,000 target stars, associated target
tables, science data compression tables and parameters, as well as processing
the raw photometric data downlinked from the spacecraft each month. The raw
data are first calibrated at the pixel level to correct for bias, smear induced
by a shutterless readout, and other detector and electronic effects. A
background sky flux is estimated from ~4500 pixels on each of the 84 CCD
readout channels, and simple aperture photometry is performed on an optimal
aperture for each star. Ancillary engineering data and diagnostic information
extracted from the science data are used to remove systematic errors in the
flux time series that are correlated with these data prior to searching for
signatures of transiting planets with a wavelet-based, adaptive matched filter.
Stars with signatures exceeding 7.1 sigma are subjected to a suite of
statistical tests including an examination of each star's centroid motion to
reject false positives caused by background eclipsing binaries. Physical
parameters for each planetary candidate are fitted to the transit signature,
and signatures of additional transiting planets are sought in the residual
light curve. The pipeline is operational, finding planetary signatures and
providing robust eliminations of false positives.Comment: 8 pages, 3 figure
Laplace Operators on Fractals and Related Functional Equations
We give an overview over the application of functional equations, namely the
classical Poincar\'e and renewal equations, to the study of the spectrum of
Laplace operators on self-similar fractals. We compare the techniques used to
those used in the euclidean situation. Furthermore, we use the obtained
information on the spectral zeta function to define the Casimir energy of
fractals. We give numerical values for this energy for the Sierpi\'nski gasket
Three red suns in the sky: A transiting, terrestrial planet in a triple M-dwarf system at 6.9 pc
We present the discovery from Transiting Exoplanet Survey Satellite (TESS) data of LTT 1445Ab. At a distance of 6.9 pc, it is the second nearest transiting exoplanet system found to date, and the closest one known for which the primary is an M dwarf. The host stellar system consists of three mid-to-late M dwarfs in a hierarchical configuration, which are blended in one TESS pixel. We use MEarth data and results from the Science Processing Operations Center data validation report to determine that the planet transits the primary star in the system. The planet has a radius of , an orbital period of days, and an equilibrium temperature of K. With radial velocities from the High Accuracy Radial Velocity Planet Searcher, we place a 3σ upper mass limit of 8.4 on the planet. LTT 1445Ab provides one of the best opportunities to date for the spectroscopic study of the atmosphere of a terrestrial world. We also present a detailed characterization of the host stellar system. We use high-resolution spectroscopy and imaging to rule out the presence of any other close stellar or brown dwarf companions. Nineteen years of photometric monitoring of A and BC indicate a moderate amount of variability, in agreement with that observed in the TESS light-curve data. We derive a preliminary astrometric orbit for the BC pair that reveals an edge-on and eccentric configuration. The presence of a transiting planet in this system hints that the entire system may be co-planar, implying that the system may have formed from the early fragmentation of an individual protostellar core.Accepted manuscrip
Kepler-20: A Sun-like Star with Three Sub-Neptune Exoplanets and Two Earth-size Candidates
We present the discovery of the Kepler-20 planetary system, which we
initially identified through the detection of five distinct periodic transit
signals in the Kepler light curve of the host star 2MASSJ19104752+4220194. We
find a stellar effective temperature Teff=5455+-100K, a metallicity of
[Fe/H]=0.01+-0.04, and a surface gravity of log(g)=4.4+-0.1. Combined with an
estimate of the stellar density from the transit light curves we deduce a
stellar mass of Mstar=0.912+-0.034 Msun and a stellar radius of
Rstar=0.944^{+0.060}_{-0.095} Rsun. For three of the transit signals, our
results strongly disfavor the possibility that these result from astrophysical
false positives. We conclude that the planetary scenario is more likely than
that of an astrophysical false positive by a factor of 2e5 (Kepler-20b), 1e5
(Kepler-20c), and 1.1e3 (Kepler-20d), sufficient to validate these objects as
planetary companions. For Kepler-20c and Kepler-20d, the blend scenario is
independently disfavored by the achromaticity of the transit: From Spitzer data
gathered at 4.5um, we infer a ratio of the planetary to stellar radii of
0.075+-0.015 (Kepler-20c) and 0.065+-0.011 (Kepler-20d), consistent with each
of the depths measured in the Kepler optical bandpass. We determine the orbital
periods and physical radii of the three confirmed planets to be 3.70d and
1.91^{+0.12}_{-0.21} Rearth for Kepler-20b, 10.85 d and 3.07^{+0.20}_{-0.31}
Rearth for Kepelr-20c, and 77.61 d and 2.75^{+0.17}_{-0.30} Rearth for
Kepler-20d. From multi-epoch radial velocities, we determine the masses of
Kepler-20b and Kepler-20c to be 8.7\+-2.2 Mearth and 16.1+-3.5 Mearth,
respectively, and we place an upper limit on the mass of Kepler-20d of 20.1
Mearth (2 sigma).Comment: accepted by ApJ, 58 pages, 12 figures revised Jan 2012 to correct
table 2 and clarify planet parameter extractio
Planetary Candidates Observed by Kepler VI: Planet Sample from Q1-Q16 (47 Months)
\We present the sixth catalog of Kepler candidate planets based on nearly 4
years of high precision photometry. This catalog builds on the legacy of
previous catalogs released by the Kepler project and includes 1493 new Kepler
Objects of Interest (KOIs) of which 554 are planet candidates, and 131 of these
candidates have best fit radii <1.5 R_earth. This brings the total number of
KOIs and planet candidates to 7305 and 4173 respectively. We suspect that many
of these new candidates at the low signal-to-noise limit may be false alarms
created by instrumental noise, and discuss our efforts to identify such
objects. We re-evaluate all previously published KOIs with orbital periods of
>50 days to provide a consistently vetted sample that can be used to improve
planet occurrence rate calculations. We discuss the performance of our planet
detection algorithms, and the consistency of our vetting products. The full
catalog is publicly available at the NASA Exoplanet Archive.Comment: 18 pages, to be published in the Astrophysical Journal Supplement
Serie
- …