868 research outputs found
Walk well:a randomised controlled trial of a walking intervention for adults with intellectual disabilities: study protocol
Background - Walking interventions have been shown to have a positive impact on physical activity (PA) levels, health and wellbeing for adult and older adult populations. There has been very little work carried out to explore the effectiveness of walking interventions for adults with intellectual disabilities. This paper will provide details of the Walk Well intervention, designed for adults with intellectual disabilities, and a randomised controlled trial (RCT) to test its effectiveness. Methods/design - This study will adopt a RCT design, with participants allocated to the walking intervention group or a waiting list control group. The intervention consists of three PA consultations (baseline, six weeks and 12 weeks) and an individualised 12 week walking programme. A range of measures will be completed by participants at baseline, post intervention (three months from baseline) and at follow up (three months post intervention and six months from baseline). All outcome measures will be collected by a researcher who will be blinded to the study groups. The primary outcome will be steps walked per day, measured using accelerometers. Secondary outcome measures will include time spent in PA per day (across various intensity levels), time spent in sedentary behaviour per day, quality of life, self-efficacy and anthropometric measures to monitor weight change. Discussion - Since there are currently no published RCTs of walking interventions for adults with intellectual disabilities, this RCT will examine if a walking intervention can successfully increase PA, health and wellbeing of adults with intellectual disabilities
Evaluation of Silver Nanoparticle Toxicity in Skin in Vivo and Keratinocytes in Vitro
IntroductionProducts using the antimicrobial properties of silver nanoparticles (Ag-nps) may be found in health and consumer products that routinely contact skin.ObjectivesThis study was designed to assess the potential cytotoxicity of Ag-nps in human epidermal keratinocytes (HEKs) and their inflammatory and penetrating potential into porcine skin in vivo.Materials and MethodsWe used eight different Ag-nps in this study [unwashed/uncoated (20, 50, and 80 nm particle diameter), washed/uncoated (20, 50, and 80 nm), and carbon-coated (25 and 35 nm)]. Skin was dosed topically for 14 consecutive days. HEK viability was assessed by MTT, alamarBlue (aB), and CellTiter 96 AQueous One (96AQ). Release of the proinflammatory mediators interleukin (IL)-1β, IL-6, IL-8, IL-10, and tumor necrosis factor-α (TNF-α) were measured.ResultsThe effect of the unwashed Ag-nps on HEK viability after a 24-hr exposure indicated a significant dose-dependent decrease (p < 0.05) at 0.34 μg/mL with aB and 96AQ and at 1.7 μg/mL with MTT. However, both the washed Ag-nps and carbon-coated Ag-nps showed no significant decrease in viability at any concentration assessed by any of the three assays. For each of the unwashed Ag-nps, we noted a significant increase (p < 0.05) in IL-1β, IL-6, IL-8, and TNF-α concentrations. We observed localization of all Ag-nps in cytoplasmic vacuoles of HEKs. Macroscopic observations showed no gross irritation in porcine skin, whereas microscopic and ultrastructural observations showed areas of focal inflammation and localization of Ag-nps on the surface and in the upper stratum corneum layers of the skin.ConclusionThis study provides a better understanding Ag-nps safety in vitro as well as in vivo and a basis for occupational and risk assessment. Ag-nps are nontoxic when dosed in washed Ag-nps solutions or carbon coated
The spectral, spatial and contrast sensitivity of human polarization pattern perception
It is generally believed that humans perceive linear polarized light following its conversion into a luminance signal by diattenuating macular structures. Measures of polarization sensitivity may therefore allow a targeted assessment of macular function. Our aim here was to quantify psychophysical characteristics of human polarization perception using grating and optotype stimuli defined solely by their state of linear polarization. We show: (i) sensitivity to polarization patterns follows the spectral sensitivity of macular pigment; (ii) the change in sensitivity across the central field follows macular pigment density; (iii) polarization patterns are identifiable across a range of contrasts and scales, and can be resolved with an acuity of 15.4 cycles/degree (0.29 logMAR); and (iv) the human eye can discriminate between areas of linear polarization differing in electric field vector orientation by as little as 4.4°. These findings, which support the macular diattenuator model of polarization sensitivity, are unique for vertebrates and approach those of some invertebrates with a well-developed polarization sense. We conclude that this sensory modality extends beyond Haidinger's brushes to the recognition of quantifiable spatial polarization-modulated patterns. Furthermore, the macular origin and sensitivity of human polarization pattern perception makes it potentially suitable for the detection and quantification of macular dysfunction
Mid-Ocean Outbreaks of COVID-19 with Tell-Tale Signs of Aerial Incidence
DOI: 10.37421/Virol Curr Res.2020.4.114 is not valid yet [https://doi.org/10.37421/Virol%20Curr%20Res.2020.4.114].Copyright © 2022 The Authors. Outbreaks of COVID-19 in passengers and crew in ships at sea continue to pose a problem for conventional epidemiology. In one instance the crew of an Argentinian fishing trawler, who were quarantined and tested negative before sailing, contracted the disease after 35 days at sea. In another instance a livestock ship had crew that was isolated and confined becoming sick with presumed COVID-19 whilst sailing in mid-ocean
Neuromuscular fatigue and recovery after strenuous exercise depends on skeletal muscle size and stem cell characteristics.
Hamstring muscle injury is highly prevalent in sports involving repeated maximal sprinting. Although neuromuscular fatigue is thought to be a risk factor, the mechanisms underlying the fatigue response to repeated maximal sprints are unclear. Here, we show that repeated maximal sprints induce neuromuscular fatigue accompanied with a prolonged strength loss in hamstring muscles. The immediate hamstring strength loss was linked to both central and peripheral fatigue, while prolonged strength loss was associated with indicators of muscle damage. The kinematic changes immediately after sprinting likely protected fatigued hamstrings from excess elongation stress, while larger hamstring muscle physiological cross-sectional area and lower myoblast:fibroblast ratio appeared to protect against fatigue/damage and improve muscle recovery within the first 48 h after sprinting. We have therefore identified novel mechanisms that likely regulate the fatigue/damage response and initial recovery following repeated maximal sprinting in humans
The Rossiter-McLaughlin effect in Exoplanet Research
The Rossiter-McLaughlin effect occurs during a planet's transit. It provides
the main means of measuring the sky-projected spin-orbit angle between a
planet's orbital plane, and its host star's equatorial plane. Observing the
Rossiter-McLaughlin effect is now a near routine procedure. It is an important
element in the orbital characterisation of transiting exoplanets. Measurements
of the spin-orbit angle have revealed a surprising diversity, far from the
placid, Kantian and Laplacian ideals, whereby planets form, and remain, on
orbital planes coincident with their star's equator. This chapter will review a
short history of the Rossiter-McLaughlin effect, how it is modelled, and will
summarise the current state of the field before describing other uses for a
spectroscopic transit, and alternative methods of measuring the spin-orbit
angle.Comment: Review to appear as a chapter in the "Handbook of Exoplanets", ed. H.
Deeg & J.A. Belmont
Compressed representation of a partially defined integer function over multiple arguments
In OLAP (OnLine Analitical Processing) data are analysed in an n-dimensional cube. The cube may be represented as a partially defined function over n arguments. Considering that often the function is not defined everywhere, we ask: is there a known way of representing the function or the points in which it is defined, in a more compact manner than the trivial one
Search for a New Heavy Gauge Boson Wprime with Electron + missing ET Event Signature in ppbar collisions at sqrt(s)=1.96 TeV
We present a search for a new heavy charged vector boson decaying
to an electron-neutrino pair in collisions at a center-of-mass
energy of 1.96\unit{TeV}. The data were collected with the CDF II detector
and correspond to an integrated luminosity of 5.3\unit{fb}^{-1}. No
significant excess above the standard model expectation is observed and we set
upper limits on . Assuming standard
model couplings to fermions and the neutrino from the boson decay to
be light, we exclude a boson with mass less than
1.12\unit{TeV/}c^2 at the 95\unit{%} confidence level.Comment: 7 pages, 2 figures Submitted to PR
Measurement of the Forward-Backward Asymmetry in the B -> K(*) mu+ mu- Decay and First Observation of the Bs -> phi mu+ mu- Decay
We reconstruct the rare decays , , and in a data sample
corresponding to collected in collisions at
by the CDF II detector at the Fermilab Tevatron
Collider. Using and decays we report the branching ratios. In addition, we report
the measurement of the differential branching ratio and the muon
forward-backward asymmetry in the and decay modes, and the
longitudinal polarization in the decay mode with respect to the squared
dimuon mass. These are consistent with the theoretical prediction from the
standard model, and most recent determinations from other experiments and of
comparable accuracy. We also report the first observation of the {\mathcal{B}}(B^0_s \to
\phi\mu^+\mu^-) = [1.44 \pm 0.33 \pm 0.46] \times 10^{-6}27 \pm 6B^0_s$ decay observed.Comment: 7 pages, 2 figures, 3 tables. Submitted to Phys. Rev. Let
- …