256 research outputs found
Bias in culture-independent assessments of microbial biodiversity in the global ocean
On the basis of 16S rRNA gene sequencing, the SAR11 clade of marine bacteria has almost universal distribution, being detected as abundant sequences in all marine provinces. Yet SAR11 sequences are rarely detected in fosmid libraries, suggesting that the widespread abundance may be an artefact of PCR cloning and that SAR 11 has a relatively low abundance. Here the relative abundance of SAR11 is explored in both a fosmid library and a metagenomic sequence data set from the same biological community taken from fjord surface water from Bergen, Norway. Pyrosequenced data and 16S clone data confirmed an 11-15% relative abundance of SAR11 within the community. In contrast not a single SAR11 fosmid was identified in a pooled shotgun sequenced data set of 100 fosmid clones. This under-representation was evidenced by comparative abundances of SAR11 sequences assessed by taxonomic annotation; functional metabolic profiling and fragment recruitment. Analysis revealed a similar under-representation of low-GC Flavobacteriaceae. We speculate that the fosmid bias may be due to DNA fragmentation during preparation due to the low GC content of SAR11 sequences and other underrepresented taxa. This study suggests that while fosmid libraries can be extremely useful, caution must be used when directly inferring community composition from metagenomic fosmid libraries
Host-hijacking and planktonic piracy: how phages command the microbial high seas
Microbial communities living in the oceans are major drivers of global biogeochemical cycles. With nutrients limited across vast swathes of the ocean, marine microbes eke out a living under constant assault from predatory viruses. Viral concentrations exceed those of their bacterial prey by an order of magnitude in surface water, making these obligate parasites the most abundant biological entities in the ocean. Like the pirates of the 17th and 18th centuries that hounded ships plying major trade and exploration routes, viruses have evolved mechanisms to hijack microbial cells and repurpose their cargo and indeed the vessels themselves to maximise viral propagation. Phenotypic reconfiguration of the host is often achieved through Auxiliary Metabolic Genes – genes originally derived from host genomes but maintained and adapted in viral genomes to redirect energy and substrates towards viral synthesis. In this review, we critically evaluate the literature describing the mechanisms used by bacteriophages to reconfigure host metabolism and to plunder intracellular resources to optimise viral production. We also highlight the mechanisms used when, in challenging environments, a ‘batten down the hatches’ strategy supersedes that of ‘plunder and pillage’. Here, the infecting virus increases host fitness through phenotypic augmentation in order to ride out the metaphorical storm, with a concomitant impact on host substrate uptake and metabolism, and ultimately, their interactions with their wider microbial community. Thus, the traditional view of the virus-host relationship as predator and prey does not fully characterise the variety or significance of the interactions observed. Recent advances in viral metagenomics have provided a tantalising glimpse of novel mechanisms of viral metabolic reprogramming in global oceans. Incorporation of these new findings into global biogeochemical models requires experimental evidence from model systems and major improvements in our ability to accurately predict protein function from sequence data
Genome sequences of four Vibrio parahaemolyticus strains isolated from the English Channel and the River Thames
This is the final version. Available from American Society for Microbiology via the DOI in this record.Data availability:
Assembled and annotated genomes are publicly available within JGI IMG/M
(https://img.jgi.doe.gov/) using the following taxon IDs: V. parahaemolyticus EXE V18/004
(2816332655); V. parahaemolyticus V12/024 (2816332656); V. parahaemolyticus V05/313
(2816332657) and V. parahaemolyticus V05/027 (2816332658). Read data is available on the
European Nucleotide Archive under the following accession numbers: V. parahaemolyticus
EXE V18/004: ERS3342146; V. parahaemolyticus V12/024: ERS3342147;
V. parahaemolyticus V05/313: ERS3342148 and V. parahaemolyticus V05/027 ERS3342149.Vibrio parahaemolyticus, is the lead causative agent for seafood-borne human
gastroenteritis. Whilst occurrence has traditionally been uncommon in Europe and the
UK, rising sea surface temperatures have resulted in an increased prevalence. Here, we
present the complete genome sequences of four novel V. parahaemolyticus strains, isolated
from the UK.Natural Environment Research Council (NERC)Biotechnology and Biological Sciences Research Council (BBSRC
Pyrosequencing of Mytilus galloprovincialis cDNAs: tissue-specific expression patterns.
BACKGROUND: Mytilus species are important in marine ecology and in environmental quality assessment, yet their molecular biology is poorly understood. Molecular aspects of their reproduction, hybridisation between species, mitochondrial inheritance, skewed sex ratios of offspring and adaptation to climatic and pollution factors are priority areas. METHODOLOGY/PRINCIPAL FINDINGS: To start to address this situation, expressed genetic transcripts from M. galloprovincialis were pyrosequenced. Transcripts were isolated from the digestive gland, foot, gill and mantle of both male and female mussels. In total, 175,547 sequences were obtained and for foot and mantle, 90% of the sequences could be assembled into contiguous fragments but this reduced to 75% for the digestive gland and gill. Transcripts relating to protein metabolism and respiration dominated including ribosomal proteins, cytochrome oxidases and NADH dehydrogenase subunits. Tissue specific variation was identified in transcripts associated with mitochondrial energy metabolism, with the digestive gland and gill having the greatest transcript abundance. Using fragment recruitment it was also possible to identify sites of potential small RNAs involved in mitochondrial transcriptional regulation. Sex ratios based on Vitelline Envelop Receptor for Lysin and Vitelline Coat Lysin transcript abundances, indicated that an equal sex distribution was maintained. Taxonomic profiling of the M. galloprovincialis tissues highlighted an abundant microbial flora associated with the digestive gland. Profiling of the tissues for genes involved in intermediary metabolism demonstrated that the gill and digestive gland were more similar to each other than to the other two tissues, and specifically the foot transcriptome was most dissimilar. CONCLUSIONS: Pyrosequencing has provided extensive genomic information for M. galloprovincialis and generated novel observations on expression of different tissues, mitochondria and associated microorganisms. It will also facilitate the much needed production of an oligonucleotide microarray for the organism
Biogeochemical and microbial variation across 5500 km of Antarctic surface sediment implicates organic matter as a driver of Benthic Community Structure.
This is the final version of the article. Available from Frontiers Media via the DOI in this record.Western Antarctica, one of the fastest warming locations on Earth, is a unique environment that is underexplored with regards to biodiversity. Although pelagic microbial communities in the Southern Ocean and coastal Antarctic waters have been well-studied, there are fewer investigations of benthic communities and most have a focused geographic range. We sampled surface sediment from 24 sites across a 5500 km region of Western Antarctica (covering the Ross Sea to the Weddell Sea) to examine relationships between microbial communities and sediment geochemistry. Sequencing of the 16S and 18S rRNA genes showed microbial communities in sediments from the Antarctic Peninsula (AP) and Western Antarctica (WA), including the Ross, Amundsen, and Bellingshausen Seas, could be distinguished by correlations with organic matter concentrations and stable isotope fractionation (total organic carbon; TOC, total nitrogen; TN, and δ(13)C). Overall, samples from the AP were higher in nutrient content (TOC, TN, and NH4 (+)) and communities in these samples had higher relative abundances of operational taxonomic units (OTUs) classified as the diatom, Chaetoceros, a marine cercozoan, and four OTUs classified as Flammeovirgaceae or Flavobacteria. As these OTUs were strongly correlated with TOC, the data suggests the diatoms could be a source of organic matter and the Bacteroidetes and cercozoan are grazers that consume the organic matter. Additionally, samples from WA have lower nutrients and were dominated by Thaumarchaeota, which could be related to their known ability to thrive as lithotrophs. This study documents the largest analysis of benthic microbial communities to date in the Southern Ocean, representing almost half the continental shoreline of Antarctica, and documents trophic interactions and coupling of pelagic and benthic communities. Our results indicate potential modifications in carbon sequestration processes related to change in community composition, identifying a prospective mechanism that links climate change to carbon availability.Funds through NSF Antarctic Program: AM (CMU: Award Number 1043670), KH, and SS (AU Award Number: 1043745) and from Central Michigan University Faculty Research and Creative Endeavors (FRCE) Committee and College of Science and Technolog
Single-cell enabled comparative genomics of a deep ocean SAR11 bathytype.
This is the author's accepted mansucript.Final version available from Nature via the DOI in this record.Bacterioplankton of the SAR11 clade are the most abundant microorganisms in marine systems, usually representing 25% or more of the total bacterial cells in seawater worldwide. SAR11 is divided into subclades with distinct spatiotemporal distributions (ecotypes), some of which appear to be specific to deep water. Here we examine the genomic basis for deep ocean distribution of one SAR11 bathytype (depth-specific ecotype), subclade Ic. Four single-cell Ic genomes, with estimated completeness of 55%-86%, were isolated from 770 m at station ALOHA and compared with eight SAR11 surface genomes and metagenomic datasets. Subclade Ic genomes dominated metagenomic fragment recruitment below the euphotic zone. They had similar COG distributions, high local synteny and shared a large number (69%) of orthologous clusters with SAR11 surface genomes, yet were distinct at the 16S rRNA gene and amino-acid level, and formed a separate, monophyletic group in phylogenetic trees. Subclade Ic genomes were enriched in genes associated with membrane/cell wall/envelope biosynthesis and showed evidence of unique phage defenses. The majority of subclade Ic-specfic genes were hypothetical, and some were highly abundant in deep ocean metagenomic data, potentially masking mechanisms for niche differentiation. However, the evidence suggests these organisms have a similar metabolism to their surface counterparts, and that subclade Ic adaptations to the deep ocean do not involve large variations in gene content, but rather more subtle differences previously observed deep ocean genomic data, like preferential amino-acid substitutions, larger coding regions among SAR11 clade orthologs, larger intergenic regions and larger estimated average genome size.This work was supported by the Gordon and Betty Moore Foundation (SJG and EFD), the US Department of Energy Joint Genome Institute (JGI) Community Supported Program grant 2011-387 (RS, BKS, EFD, SJG), National Science Foundation (NSF) Science and Technology Center Award EF0424599 (EFD), NSF awards EF-826924 (RS), OCE-821374 (RS) and OCE-1232982 (RS and BKS), and is based on work supported by the NSF under Award no. DBI-1003269 (JCT). Sequencing was conducted by JGI and supported by the Office of Science of the US Department of Energy under Contract No. DE-AC02-05CH11231
Permanent draft genome sequence of Vibrio tubiashii strain NCIMB 1337 (ATCC19106).
This is the final version of the article. Available from BioMed Central via the DOI in this record.Vibrio tubiashii NCIMB 1337 is a major and increasingly prevalent pathogen of bivalve mollusks, and shares a close phylogenetic relationship with both V. orientalis and V. coralliilyticus. It is a Gram-negative, curved rod-shaped bacterium, originally isolated from a moribund juvenile oyster, and is both oxidase and catalase positive. It is capable of growth under both aerobic and anaerobic conditions. Here we describe the features of this organism, together with the draft genome and annotation. The genome is 5,353,266 bp long, consisting of two chromosomes, and contains 4,864 protein-coding and 86 RNA genes.We wish to thank i-G Peninsula (Prospect Place, the Hoe, Plymouth, Devon, UK) for providing funding for this project, and NBAF Edinburgh for performing the sequencing
Discovery of a SAR11 growth requirement for thiamin's pyrimidine precursor and its distribution in the Sargasso Sea.
This is the author's accepted manuscript.Final version available from Nature via the DOI in this record.Vitamin traffic, the production of organic growth factors by some microbial community members and their use by other taxa, is being scrutinized as a potential explanation for the variation and highly connected behavior observed in ocean plankton by community network analysis. Thiamin (vitamin B1), a cofactor in many essential biochemical reactions that modify carbon-carbon bonds of organic compounds, is distributed in complex patterns at subpicomolar concentrations in the marine surface layer (0-300 m). Sequenced genomes from organisms belonging to the abundant and ubiquitous SAR11 clade of marine chemoheterotrophic bacteria contain genes coding for a complete thiamin biosynthetic pathway, except for thiC, encoding the 4-amino-5-hydroxymethyl-2-methylpyrimidine (HMP) synthase, which is required for de novo synthesis of thiamin's pyrimidine moiety. Here we demonstrate that the SAR11 isolate 'Candidatus Pelagibacter ubique', strain HTCC1062, is auxotrophic for the thiamin precursor HMP, and cannot use exogenous thiamin for growth. In culture, strain HTCC1062 required 0.7 zeptomoles per cell (ca. 400 HMP molecules per cell). Measurements of dissolved HMP in the Sargasso Sea surface layer showed that HMP ranged from undetectable (detection limit: 2.4 pM) to 35.7 pM, with maximum concentrations coincident with the deep chlorophyll maximum. In culture, some marine cyanobacteria, microalgae and bacteria exuded HMP, and in the Western Sargasso Sea, HMP profiles changed between the morning and evening, suggesting a dynamic biological flux from producers to consumers.This work was supported by the Gordon and Betty Moore Foundation’s Marine Microbiology Initiative and National Science Foundation grant OCE-0802004
Draft Genome Sequences of Pelagimyophage Mosig EXVC030M and Pelagipodophage Lederberg EXVC029P, Isolated from Devil's Hole, Bermuda
This is the final version. Available on open access from the American Society for Microbiology via the DOI in this recordData availability.
The complete genome sequences were deposited under GenBank accession numbers MT647605 (Lederberg) and MT647606 (Mosig). The corresponding read data were deposited in the Sequence Read Archive (SRA) under BioProject number PRJNA625644 and SRA accession number SRR12024324.We present the genomes of two isolated bacteriophages infecting Pelagibacter ubique HTCC1062. Pelagibacter phage Mosig EXVC030M (Myoviridae) and Pelagibacter phage Lederberg EXVC029P (Podoviridae) were isolated by dilution-to-extinction culturing from the oxygen minimum zone at Devil's Hole (Harrington Sound, Bermuda).Natural Environment Research Council (NERC)Simons FoundationWellcome TrustBiotechnology and Biological Sciences Research Council (BBSRC
- …