7 research outputs found
The effect of Aspalathin linearis, Cyclopia intermedia and Sutherlandia frutescene on sperm functional parameters of healthy male wistar rats
Introduction: Rooibos (Aspalathin linearis), honeybush (Cyclopia intermedia), and sutherlandia (Sutherlandia frutescene) are three Southern Africa indigenous plants, of which the extracts have become house-hold items and are consumed on a large scale. Although, they are known for their antioxidant properties, studies have highlighted danger in the excessive intake. Therefore, the current study investigated whether treatment with rooibos, honeybush, and sutherlandia will impact sperm functional parameters positively or otherwise, in healthy rats.Methods: Fourteen-week-old pathogen-free adult male Wistar rats (250â300Â g) were randomly divided into four groups of ten, including a control, rooibos (RF), honeybush (HB) and a sutherlandia (SL) group. After 7Â weeks of treatment, animals were sacrificed. Spermatozoa were retrieved from the cauda epididymis for motility, morphology and concentration analysis and the testis was used for all biochemical assays.Results: The infusion treated animals (RF, HB, and SL) presented with a non-significant decrease of â14.3%, â18.2%, â17.2% and â24.8%, â20.7%, â27.3% in total motility and progressive motility when compared to the control group, respectively. There was a significant increase in number of spermatozoa with slow speed (p = 0.03), especially in SL treated group compared to the control (p = 0.03). Additionally, there was an increase of 28.8%, 31.7%, 23% in superoxide dismutase (SOD) activity of RF, HB and SL compared to control, respectively. This was accompanied with a percentage decrease of â21.1%, â23.7%, 45.9% in malondialdehyde (MDA) levels compared to the control group.Conclusion: In summary, animals treated with the respective infusions presented with a percentage increase in SOD activity but have reduced sperm motility and decreased normal morphology. Paradoxically, they presented with increased sperm concentration. Hence, it is presumed that rooibos, honeybush and sutherlandia may enhance sperm quantity (concentration) but may impair sperm quality (motility morphology) when consumed by healthy animals
Omics and Male Infertility: Highlighting the Application of Transcriptomic Data
Male infertility is a multifaceted disorder affecting approximately 50% of male partners in infertile couples. Over the years, male infertility has been diagnosed mainly through semen analysis, hormone evaluations, medical records and physical examinations, which of course are fundamental, but yet inefficient, because 30% of male infertility cases remain idiopathic. This dilemmatic status of the unknown needs to be addressed with more sophisticated and result-driven technologies and/or techniques. Genetic alterations have been linked with male infertility, thereby unveiling the practicality of investigating this disorder from the “omics” perspective. Omics aims at analyzing the structure and functions of a whole constituent of a given biological function at different levels, including the molecular gene level (genomics), transcript level (transcriptomics), protein level (proteomics) and metabolites level (metabolomics). In the current study, an overview of the four branches of omics and their roles in male infertility are briefly discussed; the potential usefulness of assessing transcriptomic data to understand this pathology is also elucidated. After assessing the publicly obtainable transcriptomic data for datasets on male infertility, a total of 1385 datasets were retrieved, of which 10 datasets met the inclusion criteria and were used for further analysis. These datasets were classified into groups according to the disease or cause of male infertility. The groups include non-obstructive azoospermia (NOA), obstructive azoospermia (OA), non-obstructive and obstructive azoospermia (NOA and OA), spermatogenic dysfunction, sperm dysfunction, and Y chromosome microdeletion. Findings revealed that 8 genes (LDHC, PDHA2, TNP1, TNP2, ODF1, ODF2, SPINK2, PCDHB3) were commonly differentially expressed between all disease groups. Likewise, 56 genes were common between NOA versus NOA and OA (ADAD1, BANF2, BCL2L14, C12orf50, C20orf173, C22orf23, C6orf99, C9orf131, C9orf24, CABS1, CAPZA3, CCDC187, CCDC54, CDKN3, CEP170, CFAP206, CRISP2, CT83, CXorf65, FAM209A, FAM71F1, FAM81B, GALNTL5, GTSF1, H1FNT, HEMGN, HMGB4, KIF2B, LDHC, LOC441601, LYZL2, ODF1, ODF2, PCDHB3, PDHA2, PGK2, PIH1D2, PLCZ1, PROCA1, RIMBP3, ROPN1L, SHCBP1L, SMCP, SPATA16, SPATA19, SPINK2, TEX33, TKTL2, TMCO2, TMCO5A, TNP1, TNP2, TSPAN16, TSSK1B, TTLL2, UBQLN3). These genes, particularly the above-mentioned 8 genes, are involved in diverse biological processes such as germ cell development, spermatid development, spermatid differentiation, regulation of proteolysis, spermatogenesis and metabolic processes. Owing to the stage-specific expression of these genes, any mal-expression can ultimately lead to male infertility. Therefore, currently available data on all branches of omics relating to male fertility can be used to identify biomarkers for diagnosing male infertility, which can potentially help in unravelling some idiopathic cases
Diabetes mellitus and male infertility
Infertility is prevalent in about 10%-25% of couples in their reproductive age, analogous to 60-80 million infertile couples globally. Of these infertility cases, 10%-30% are exclusively attributed to a problem of the male. Several diseases have been implicated as contributors to deteriorating male fertility and diabetes mellitus (DM) is included. DM, a chronic non-communicable disease, has been considered as one of the most appreciable health threats, as it affects 9% (422 million) of the worldâs population as of 2014. It is characterised by hyperglycaemia, which can result from the inability of the pancreatic β-cells to secrete insulin or from the target tissue becoming insensitive to insulin. DM has been reported to influence male reproductive function through diverse pathways and mechanisms. The adverse effects of reactive oxygen species and successive development of oxidative stress that occur due to DM have been investigated and implicated by several studies. The products of non-enzymatic glycosylation are reported to be widely distributed in the reproductive tract of diabetic men. Additionally, DM has been implicated to impair the processes of male sexual acts. Data reported in this review were extracted from PubMed, Google Scholar, Science Direct and Scopus with diabetes and male infertility as the key search words. In light of the aforementioned, the aim of this review is to provide brief background information on DM as well highlight and explain the likely mechanisms of male fertility which DM impacts
Diabetes mellitus and male infertility
CITATION: Omolaoye, T. & Du Plessis, S. S. 2018. Diabetes mellitus and male infertility. Asian Pacific Journal of Reproduction, 7(1):6-14, doi:10.4103/2305-0500.220978.The original publication is available at http://www.apjr.netENGLISH ABSTRACT: Infertility is prevalent in about 10%-25% of couples in their reproductive age, analogous to
60-80 million infertile couples globally. Of these infertility cases, 10%-30% are exclusively
attributed to a problem of the male. Several diseases have been implicated as contributors
to deteriorating male fertility and diabetes mellitus (DM) is included. DM, a chronic noncommunicable disease, has been considered as one of the most appreciable health threats,
as it affects 9% (422 million) of the worldâs population as of 2014. It is characterised by
hyperglycaemia, which can result from the inability of the pancreatic每-cells to secrete
insulin or from the target tissue becoming insensitive to insulin. DM has been reported to
influence male reproductive function through diverse pathways and mechanisms. The adverse
effects of reactive oxygen species and successive development of oxidative stress that occur
due to DM have been investigated and implicated by several studies. The products of nonenzymatic glycosylation are reported to be widely distributed in the reproductive tract of
diabetic men. Additionally, DM has been implicated to impair the processes of male sexual
acts. Data reported in this review were extracted from PubMed, Google Scholar, Science
Direct and Scopus with diabetes and male infertility as the key search words. In light of the
aforementioned, the aim of this review is to provide brief background information on DM as
well highlight and explain the likely mechanisms of male fertility which DM impacts.Publisher's versio
Omics and Male Infertility: Highlighting the Application of Transcriptomic Data
Male infertility is a multifaceted disorder affecting approximately 50% of male partners in infertile couples. Over the years, male infertility has been diagnosed mainly through semen analysis, hormone evaluations, medical records and physical examinations, which of course are fundamental, but yet inefficient, because 30% of male infertility cases remain idiopathic. This dilemmatic status of the unknown needs to be addressed with more sophisticated and result-driven technologies and/or techniques. Genetic alterations have been linked with male infertility, thereby unveiling the practicality of investigating this disorder from the âomicsâ perspective. Omics aims at analyzing the structure and functions of a whole constituent of a given biological function at different levels, including the molecular gene level (genomics), transcript level (transcriptomics), protein level (proteomics) and metabolites level (metabolomics). In the current study, an overview of the four branches of omics and their roles in male infertility are briefly discussed; the potential usefulness of assessing transcriptomic data to understand this pathology is also elucidated. After assessing the publicly obtainable transcriptomic data for datasets on male infertility, a total of 1385 datasets were retrieved, of which 10 datasets met the inclusion criteria and were used for further analysis. These datasets were classified into groups according to the disease or cause of male infertility. The groups include non-obstructive azoospermia (NOA), obstructive azoospermia (OA), non-obstructive and obstructive azoospermia (NOA and OA), spermatogenic dysfunction, sperm dysfunction, and Y chromosome microdeletion. Findings revealed that 8 genes (LDHC, PDHA2, TNP1, TNP2, ODF1, ODF2, SPINK2, PCDHB3) were commonly differentially expressed between all disease groups. Likewise, 56 genes were common between NOA versus NOA and OA (ADAD1, BANF2, BCL2L14, C12orf50, C20orf173, C22orf23, C6orf99, C9orf131, C9orf24, CABS1, CAPZA3, CCDC187, CCDC54, CDKN3, CEP170, CFAP206, CRISP2, CT83, CXorf65, FAM209A, FAM71F1, FAM81B, GALNTL5, GTSF1, H1FNT, HEMGN, HMGB4, KIF2B, LDHC, LOC441601, LYZL2, ODF1, ODF2, PCDHB3, PDHA2, PGK2, PIH1D2, PLCZ1, PROCA1, RIMBP3, ROPN1L, SHCBP1L, SMCP, SPATA16, SPATA19, SPINK2, TEX33, TKTL2, TMCO2, TMCO5A, TNP1, TNP2, TSPAN16, TSSK1B, TTLL2, UBQLN3). These genes, particularly the above-mentioned 8 genes, are involved in diverse biological processes such as germ cell development, spermatid development, spermatid differentiation, regulation of proteolysis, spermatogenesis and metabolic processes. Owing to the stage-specific expression of these genes, any mal-expression can ultimately lead to male infertility. Therefore, currently available data on all branches of omics relating to male fertility can be used to identify biomarkers for diagnosing male infertility, which can potentially help in unravelling some idiopathic cases
Statins and Male Fertility: Is There a Cause for Concern?
The well-known 3-hydroxyl 3-methyl glutaryl-Coenzyme A reductase inhibitors, called statins, have been the main medication used in the treatment of hypercholesterolemia and some cases of cardiovascular diseases. The effectiveness of this drug in controlling cholesterol production is impeccable, however, patients often complain of a variety of side effects, such as myalgia, muscle atrophy, and in some cases, rhabdomyolysis. Not only has the use of statins caused the aforementioned side effects, but they are also shown to cause testicular discomfort, erectile dysfunction, altered semen parameters, and modified steroid hormone production. These reported adverse effects on male fertility are not generally agreed upon, as some have shown the use to be beneficial. Hence, this makes the aftermath effect of statin use on male fertility debatable and controversial. The negative effects have been associated with imbalanced or reduced steroid hormones, which are necessary for proper spermatogenesis and other sexual functions. Meanwhile, the beneficial effects are related to statin’s anti-inflammatory and cardioprotective properties. These contradictory findings are in part due to the different age of users, concentrations of statins, the type and duration of treatment, and the underlying disease and/or comorbidities. Therefore, the current study aims to analyze the literature and gather evidence as to the effects of statin on male sexual health and reproductive parameters, and subsequently give recommendations for the direction of future studies