21 research outputs found

    The choroid plexus as a sex hormone target: Functional implications

    Get PDF
    The choroid plexuses (CPs) are highly vascularized branched structures that protrude into the ventricles of the brain, and form a unique interface between the blood and the cerebrospinal fluid (CSF). In recent years, novel functions have been attributed to this tissue such as in immune and chemical surveillance of the central nervous system, brain development, adult neurogenesis and circadian rhythm regulation. Sex hormones (SH) are widely recognized as modulators in several neurodegenerative diseases, and there is evidence that estrogens and androgens regulate several fundamental biological functions in the CPs. Therefore, SH are likely to affect the composition of the CSF impacting on brain homeostasis. This review will look at implications of the CPs' sex-related specificities.Portuguese Foundation for Science and Technology (FCT, Portugal – http://www.fct.pt) project grants (PTDC/SAU-NEU/114800/2009); and by FEDER funds through the POCI – COMPETE 2020 – Operational Programme Competitiveness and Internationalisation in Axis I – Strengthening research, technological development and innovation (Project No. 007491) and National Funds by FCT – Foundation for Science and Technology (Project UID/Multi/00709). Joana TomĂĄs was supported by a grant from CENTRO-07-ST24-FEDER-002015. Telma Quintela is a recipient of a FCT fellowship (SFRH/BPD/70781/2010). The work at ICVS/3B’s has the support of Portuguese North Regional Operational Program (ON.2 – O Novo Norte) under the National Strategic Reference Framework (QREN), through the European Regional Development Fund (FEDER). Fernanda Marques is a recipient of a FCT Investigator award (IF/00231/2013) of the Fundação para a CiĂȘncia e Tecnologia (FCT, Portugal)info:eu-repo/semantics/publishedVersio

    Analysis of the effects of sex hormone background on the rat choroid plexus transcriptome by cDNA microarrays

    Get PDF
    The choroid plexus (CP) are highly vascularized branched structures that protrude into the ventricles of the brain, and form a unique interface between the blood and the cerebrospinal fluid (CSF), the blood-CSF barrier, that are the main site of production and secretion of CSF. Sex hormones are widely recognized as neuroprotective agents against several neurodegenerative diseases, and the presence of sex hormones cognate receptors suggest that it may be a target for these hormones. In an effort to provide further insight into the neuroprotective mechanisms triggered by sex hormones we analyzed gene expression differences in the CP of female and male rats subjected to gonadectomy, using microarray technology. In gonadectomized female and male animals, 3045 genes were differentially expressed by 1.5-fold change, compared to sham controls. Analysis of the CP transcriptome showed that the top-five pathways significantly regulated by the sex hormone background are olfactory transduction, taste transduction, metabolism, steroid hormone biosynthesis and circadian rhythm pathways. These results represent the first overview of global expression changes in CP of female and male rats induced by gonadectomy and suggest that sex hormones are implicated in pathways with central roles in CP functions and CSF homeostasis

    A global multinational survey of cefotaxime-resistant coliforms in urban wastewater treatment plants

    Get PDF
    The World Health Organization Global Action Plan recommends integrated surveillance programs as crucial strategies for monitoring antibiotic resistance. Although several national surveillance programs are in place for clinical and veterinary settings, no such schemes exist for monitoring antibiotic-resistant bacteria in the environment. In this transnational study, we developed, validated, and tested a low-cost surveillance and easy to implement approach to evaluate antibiotic resistance in wastewater treatment plants (WWTPs) by targeting cefotaxime-resistant (CTX-R) coliforms as indicators. The rationale for this approach was: i) coliform quantification methods are internationally accepted as indicators of fecal contamination in recreational waters and are therefore routinely applied in analytical labs; ii) CTX-R coliforms are clinically relevant, associated with extended-spectrum ?-lactamases (ESBLs), and are rare in pristine environments. We analyzed 57 WWTPs in 22 countries across Europe, Asia, Africa, Australia, and North America. CTX-R coliforms were ubiquitous in raw sewage and their relative abundance varied significantly (< 0.1% to 38.3%), being positively correlated (p < 0.001) with regional atmospheric temperatures. Although most WWTPs removed large proportions of CTX-R coliforms, loads over 103 colony-forming units per mL were occasionally observed in final effluents. We demonstrate that CTX-R coliform monitoring is a feasible and affordable approach to assess wastewater antibiotic resistance status

    The Influence of Circadian Rhythm on Cancer Cells Targeting and Transfection Efficiency of a Polycation-Drug/Gene Delivery Vector

    No full text
    The conception of novel anticancer delivery systems and the combination of chronobiology with nanotechnology may provide a powerful tool to optimize cancer therapy. In this work, polyethylenimine (PEI) has been used to complex p53 encoded plasmid DNA (pDNA), and the anticancer drug methotrexate (MTX) has also been loaded into the vectors. To investigate the influence of circadian clock on drug/gene delivery efficiency, HeLa, C33A and fibroblast cells have been transfected with developed PEI/pDNA/MTX delivery vectors at six different time points. Phenomena as the cellular uptake/internalization, drug/gene delivery and p53 protein production have been evaluated. The cell-associated MTX fluorescence have been monitored, and p53 protein levels quantified. In HeLa and C33A cancer cells, significant levels of MTX were found for T8 and T12. For these time points, a high amount of p53 protein was quantified. Confocal microscopy images showed successful HeLa cell’s uptake of PEI/pDNA/MTX particles, at T8. In comparison, poor levels of MTX and p53 protein were found in fibroblasts; nevertheless, results indicated rhythmicity. Data demonstrate the influence of circadian rhythm on both cancer-cells targeting ability and transfection performance of PEI/pDNA/MTX carriers and seemed to provide the optimum time for drug/gene delivery. This report adds a great contribution to the field of cancer chronobiology, highlighting the relationship between circadian rhythm and nanodelivery systems, and charting the path for further research on a, yet, poorly explored but promising topic

    The Role of Biological Rhythms in New Drug Formulations to Cross the Brain Barriers

    No full text
    For brain protection, the blood–brain barrier and blood–cerebrospinal fluid barrier limit the traffic of molecules between blood and brain tissue and between blood and cerebrospinal fluid, respectively. Besides their protective function, brain barriers also limit the passage of therapeutic drugs to the brain, which constitutes a great challenge for the development of therapeutic strategies for brain disorders. This problem has led to the emergence of novel strategies to treat neurological disorders, like the development of nanoformulations to deliver therapeutic agents to the brain. Recently, functional molecular clocks have been identified in the blood–brain barrier and in the blood–cerebrospinal fluid barrier. In fact, circadian rhythms in physiological functions related to drug disposition were also described in brain barriers. This opens the possibility for chronobiological approaches that aim to use time to improve drug efficacy and safety. The conjugation of nanoformulations with chronobiology for neurological disorders is still unexplored. Facing this, here, we reviewed the circadian rhythms in brain barriers, the nanoformulations studied to deliver drugs to the brain, and the nanoformulations with the potential to be conjugated with a chronobiological approach to therapeutic strategies for the brain

    'Smelling' the cerebrospinal fluid: olfactory signaling molecules are expressed in and mediate chemosensory signaling from the choroid plexus

    No full text
    The olfactory-type signaling machinery has been known to be involved not only in odorant detection but also in other tissues with unsuspected sensory roles. As a barrier, the choroid plexus (CP) is an active participant in the monitoring of the cerebrospinal fluid (CSF), promptly responding to alterations in its composition. We hypothesized that olfactory signaling could be active in CP, contributing to the surveillance of the CSF composition. We determined the mRNA and protein expression of the major components of the olfactory transduction pathway in the rat CP, including odorant receptors, the olfactory G-protein (Gaolf), adenylate cyclase 3 and cyclic nucleotide-gated channel 2. The functionality of the transduction pathway and the intracellular mechanisms involved were analyzed by DC field potential recording electrophysiological analysis, in an ex vivo CP-brain setup, using polyamines as stimuli and blockers of the downstream signaling pathways. Concentration-dependent responses were obtained for the polyamines studied (cadaverine, putrescine, spermine and spermidine), all known to be present in the CSF. Transfection of a CP epithelial cell line with siRNA against Gaolf effectively knocked down protein expression and reduced the CP cells' response to spermine. Thus, the key components of the olfactory chemosensory apparatus are present and are functional in murine CP, and polyamines seem to trigger both the cAMP and the phospholipase C-inositol 1,4,5-trisphosphate pathways. Olfactory-like chemosensory signaling may be an essential component of the CP chemical surveillance apparatus to detect alterations in the CSF composition, and to elicit responses to modulate and maintain brain homeostasis
    corecore