1,269 research outputs found

    Functional strengthening through synaptic scaling upon connectivity disruption in neuronal cultures

    Get PDF
    An elusive phenomenon in network neuroscience is the extent of neuronal activity remodeling upon damage. Here, we investigate the action of gradual synaptic blockade on the effective connectivity in cortical networks in vitro. We use two neuronal cultures configurations—one formed by about 130 neuronal aggregates and another one formed by about 600 individual neurons—and monitor their spontaneous activity upon progressive weakening of excitatory connectivity. We report that the effective connectivity in all cultures exhibits a first phase of transient strengthening followed by a second phase of steady deterioration. We quantify these phases by measuring GEFF, the global efficiency in processing network information. We term hyperefficiency the sudden strengthening of GEFF upon network deterioration, which increases by 20–50% depending on culture type. Relying on numerical simulations we reveal the role of synaptic scaling, an activity–dependent mechanism for synaptic plasticity, in counteracting the perturbative action, neatly reproducing the observed hyperefficiency. Our results demonstrate the importance of synaptic scaling as resilience mechanism. Author Summary Neuronal circuits exhibit homeostatic plasticity mechanisms to cope with perturbations or damage. A central mechanism is ‘synaptic scaling,’ a self-organized response in which the strength of neurons’ excitatory synapses is adjusted to compensate for activity variations. Here we present experiments in which the excitatory connectivity of in vitro cortical networks is progressively weakened through chemical action. The spontaneous activity and effective connectivity of the whole network is monitored as degradation progresses, and the capacity of the network for broad information communication is quantified through the global efficiency. We observed that the network responded to the perturbation by strengthening the effective connectivity, reaching a hyperefficient state for moderate perturbations. The study proves the importance of ‘synaptic scaling’ as a driver for functional reorganization and network-wide resilience

    Towntology & hydrOntology: Relationship between Urban and Hydrographic Features in the Geographic Information Domain

    Get PDF
    This article describes the relationship between Urban Civil Engineering and other domains, specifically the hydrographic domain. The process of building HydrOntology and the portion of the model relating to urban features are described. This ontology emerges with the intent of settling as a framework in the GI domain, very closely interrelating to Towntology

    Reduction and Emergence in Bose-Einstein Condensates

    Get PDF
    A closer look at some proposed Gedanken-experiments on BECs promises to shed light on several aspects of reduction and emergence in physics. These include the relations between classical descriptions and different quantum treatments of macroscopic systems, and the emergence of new properties and even new objects as a result of spontaneous symmetry breaking

    Quenched Spin Tunneling and Diabolical Points in Magnetic Molecules: II. Asymmetric Configurations

    Full text link
    The perfect quenching of spin tunneling first predicted for a model with biaxial symmetry, and recently observed in the magnetic molecule Fe_8, is further studied using the discrete phase integral (or Wentzel-Kramers-Brillouin) method. The analysis of the previous paper is extended to the case where the magnetic field has both hard and easy components, so that the Hamiltonian has no obvious symmetry. Herring's formula is now inapplicable, so the problem is solved by finding the wavefunction and using connection formulas at every turning point. A general formula for the energy surface in the vicinity of the diabolo is obtained in this way. This formula gives the tunneling apmplitude between two wells unrelated by symmetry in terms of a small number of action integrals, and appears to be generally valid, even for problems where the recursion contains more than five terms. Explicit results are obtained for the diabolical points in the model for Fe_8. These results exactly parallel the experimental observations. It is found that the leading semiclassical results for the diabolical points appear to be exact, and the points themselves lie on a perfect centered rectangular lattice in the magnetic field space. A variety of evidence in favor of this perfect lattice hypothesis is presented.Comment: Revtex; 4 ps figures; follow up to cond-mat/000311

    On the nature of continuous physical quantities in classical and quantum mechanics

    Get PDF
    Within the traditional Hilbert space formalism of quantum mechanics, it is not possible to describe a particle as possessing, simultaneously, a sharp position value and a sharp momentum value. Is it possible, though, to describe a particle as possessing just a sharp position value (or just a sharp momentum value)? Some, such as Teller (Journal of Philosophy, 1979), have thought that the answer to this question is No -- that the status of individual continuous quantities is very different in quantum mechanics than in classical mechanics. On the contrary, I shall show that the same subtle issues arise with respect to continuous quantities in classical and quantum mechanics; and that it is, after all, possible to describe a particle as possessing a sharp position value without altering the standard formalism of quantum mechanics.Comment: 26 pages, LaTe

    Renormalization: the observable-state model

    Get PDF
    The usual mathematical formalism of quantum field theory is non-rigorous because it contains divergences that can only be renormalized by non-rigorous mathematical methods. The purpose of this paper is to present a method of subtraction of this divergences using the formalism of decoherence. This is achieved by replacing the standard renormalization method by a projector on a well defined Hilbert subspace. In this way a list of problems of the standard formalism disappears while the physical results of QFT remains valid. From it own nature, this formalism can be used in non-renormalizable theories.Comment: 23 page

    Impact of mineral dust on cloud formation in a Saharan outflow region

    Get PDF
    We present a numerical modelling study investigating the impact of mineral dust on cloud formation over the Eastern Mediterranean for two case studies: (i) 25 September 2008 and (ii) 28/29 January 2003. In both cases dust plumes crossed the Mediterranean and interacted with clouds forming along frontal systems. For our investigation we used the fully online coupled model WRF-chem. <br><br> The results show that increased aerosol concentrations due to the presence of mineral dust can enhance the formation of ice crystals. This leads to slight shifts of the spatial and temporal precipitation patterns compared to scenarios where dust was not considered to act as ice nuclei. However, the total amount of precipitation did not change significantly. The only exception occurred when dust entered into an area of orographic ascent, causing glaciation of the clouds, leading to a local enhancement of rainfall. The impact of dust particles acting as giant cloud condensation nuclei on precipitation formation was found to be small. Based on our simulations the contribution of dust to the CCN population is potentially significant only for warm phase clouds. Nevertheless, the dust-induced differences in the microphysical structure of the clouds can contribute to a significant radiative forcing, which is important from a climate perspective

    Modelling built-up expansion and densification with multinomial logistic regression, cellular automata and genetic algorithm

    Get PDF
    This paper presents a model to simulate built-up expansion and densification based on a combination of a non-ordered multinomial logistic regression (MLR) and cellular automata (CA). The probability for built-up development is assessed based on (i) a set of built-up development causative factors and (ii) the land-use of neighboring cells. The model considers four built-up classes: non built-up, low-density, medium-density and high-density built-up. Unlike the most commonly used built-up/urban models which simulate built-up expansion, our approach considers expansion and the potential for densification within already built-up areas when their present density allows it. The model is built, calibrated, and validated for Wallonia region (Belgium) using cadastral data. Three 100 × 100 m raster-based built-up maps for 1990, 2000, and 2010 are developed to define one calibration interval (1990–2000) and one validation interval (2000 − 2010). The causative factors are calibrated using MLR whereas the CA neighboring effects are calibrated based on a multi-objective genetic algorithm. The calibrated model is applied to simulate the built-up pattern in 2010. The simulated map in 2010 is used to evaluate the model’s performance against the actual 2010 map by means of fuzzy set theory. According to the findings, land-use policy, slope, and distance to roads are the most important determinants of the expansion process. The densification process is mainly driven by zoning, slope, distance to different roads and richness index. The results also show that the densification generally occurs where there are dense neighbors whereas areas with lower densities retain their densities over time

    The Origin of Degeneracies and Crossings in the 1d Hubbard Model

    Get PDF
    The paper is devoted to the connection between integrability of a finite quantum system and degeneracies of its energy levels. In particular, we analyze in detail the energy spectra of finite Hubbard chains. Heilmann and Lieb demonstrated that in these systems there are crossings of levels of the same parameter independent symmetry. We show that this apparent violation of the Wigner-von Neumann noncrossing rule follows directly from the existence of nontrivial conservation laws and is a characteristic signature of quantum integrability. The energy spectra of Hubbard chains display many instances of permanent (at all values of the coupling) twofold degeneracies that cannot be explained by parameter independent symmetries. We relate these degeneracies to the different transformation properties of the conserved currents under spatial reflections and the particle-hole transformation and estimate the fraction of doubly degenerate states. We also discuss multiply degenerate eigenstates of the Hubbard Hamiltonian. The wave functions of many of these states do not depend on the coupling, which suggests the existence of an additional parameter independent symmetry.Comment: 25 pages, 12 figure
    corecore