225 research outputs found

    Absolute fluorescence and absorption measurements over a dynamic range of 106 with cavity-enhanced laser-induced fluorescence

    Get PDF
    We present a novel spectroscopic technique that exhibits high sensitivity and a large dynamic range for the measurement of absolute absorption coefficients. We perform a simultaneous and correlated laser-induced fluorescence and cavity ring-down measurement of the same sample in a single pulsed laser beam. The combined measurement offers a large dynamic range and a lower limit of detection than either technique on its own. The methodology, dubbed cavity-enhanced laser-induced fluorescence, is developed and rigorously tested against the electronic spectroscopy of 1,4-bis(phenylethynyl)benzene in a molecular beam and density measurements in a cell. We outline how the method can be used to determine absolute quantities, such as sample densities, absorption cross sections, and fluorescence quantum yields, particularly in spatially confined samples

    Ultra-precise measurement of optical frequency ratios

    Full text link
    We developed a novel technique for frequency measurement and synthesis, based on the operation of a femtosecond comb generator as transfer oscillator. The technique can be used to measure frequency ratios of any optical signals throughout the visible and near-infrared part of the spectrum. Relative uncertainties of 10−1810^{-18} for averaging times of 100 s are possible. Using a Nd:YAG laser in combination with a nonlinear crystal we measured the frequency ratio of the second harmonic νSH\nu_{SH} at 532 nm to the fundamental ν0\nu_0 at 1064 nm, νSH/ν0=2.000000000000000001×(1±7×10−19)\nu_{SH}/\nu_0 = 2.000 000 000 000 000 001 \times (1 \pm 7 \times 10^{-19}).Comment: 4 pages, 4 figure

    Monitoring of the operating parameters of the KATRIN Windowless Gaseous Tritium Source

    Get PDF
    The Karlsruhe Tritium Neutrino (KATRIN) experiment will measure the absolute mass scale of neutrinos with a sensitivity of \m_{\nu} = 200 meV/c2^2 by high-precision spectroscopy close to the tritium beta-decay endpoint at 18.6 keV. Its Windowless Gaseous Tritium Source (WGTS) is a beta-decay source of high intensity (101110^{11}/s) and stability, where high-purity molecular tritium at 30 K is circulated in a closed loop with a yearly throughput of 10 kg. To limit systematic effects the column density of the source has to be stabilised at the 0.1% level. This requires extensive sensor instrumentation and dedicated control and monitoring systems for parameters such as the beam tube temperature, injection pressure, gas composition and others. Here we give an overview of these systems including a dedicated Laser-Raman system as well as several beta-decay activity monitors. We also report on results of the WGTS demonstrator and other large-scale test experiments giving proof-of-principle that all parameters relevant to the systematics can be controlled and monitored on the 0.1% level or better. As a result of these works, the WGTS systematics can be controlled within stringent margins, enabling the KATRIN experiment to explore the neutrino mass scale with the design sensitivity.Comment: 32 pages, 13 figures. modification to title, typos correcte

    Commissioning of the vacuum system of the KATRIN Main Spectrometer

    Get PDF
    The KATRIN experiment will probe the neutrino mass by measuring the beta-electron energy spectrum near the endpoint of tritium beta-decay. An integral energy analysis will be performed by an electro-static spectrometer (Main Spectrometer), an ultra-high vacuum vessel with a length of 23.2 m, a volume of 1240 m^3, and a complex inner electrode system with about 120000 individual parts. The strong magnetic field that guides the beta-electrons is provided by super-conducting solenoids at both ends of the spectrometer. Its influence on turbo-molecular pumps and vacuum gauges had to be considered. A system consisting of 6 turbo-molecular pumps and 3 km of non-evaporable getter strips has been deployed and was tested during the commissioning of the spectrometer. In this paper the configuration, the commissioning with bake-out at 300{\deg}C, and the performance of this system are presented in detail. The vacuum system has to maintain a pressure in the 10^{-11} mbar range. It is demonstrated that the performance of the system is already close to these stringent functional requirements for the KATRIN experiment, which will start at the end of 2016.Comment: submitted for publication in JINST, 39 pages, 15 figure

    Phase- coherent comparison of two optical frequency standards over 146 km using a telecommunication fiber link

    Get PDF
    We have explored the performance of two "dark fibers" of a commercial telecommunication fiber link for a remote comparison of optical clocks. The two fibers, linking the Leibniz University of Hanover (LUH) with the Physi-kalisch-Technische Bundesanstalt (PTB) in Braunschweig, are connected in Hanover to form a total fiber length of 146 km. At PTB the performance of an optical frequency standard operating at 456 THz was imprinted to a cw trans-fer laser at 194 THz, and its frequency was transmitted over the fiber. In order to detect and compensate phase noise related to the optical fiber link we have built a low-noise optical fiber interferometer and investigated noise sources that affect the overall performance of the optical link. The frequency stability at the remote end has been measured using the clock laser of PTB's Yb+ frequency standard operating at 344 THz. We show that the frequency of a frequency-stabilized fiber laser can be transmitted over a total fiber length of 146 km with a relative frequency uncertainty below 1E-19, and short term frequency instability given by the fractional Allan deviation of sy(t)=3.3E-15/(t/s)
    • …
    corecore