645 research outputs found
Phase transitions of extended-range probabilistic cellular automata with two absorbing states
We study phase transitions in a long-range one-dimensional cellular automaton
with two symmetric absorbing states. It includes and extends several other
models, like the Ising and Domany-Kinzel ones. It is characterized by a
competing ferromagnetic linear coupling and an antiferromagnetic nonlinear one.
Despite its simplicity, this model exhibits an extremely rich phase diagram. We
present numerical results and mean-field approximations.Comment: New and expanded versio
Quantum and classical echoes in scattering systems described by simple Smale horseshoes
We explore the quantum scattering of systems classically described by binary
and other low order Smale horseshoes, in a stage of development where the
stable island associated with the inner periodic orbit is large, but chaos
around this island is well developed. For short incoming pulses we find
periodic echoes modulating an exponential decay over many periods. The period
is directly related to the development stage of the horseshoe. We exemplify our
studies with a one-dimensional system periodically kicked in time and we
mention possible experiments.Comment: 7 pages with 6 reduced quality figures! Please contact the authors
([email protected]) for an original good quality pre-prin
Cross-section calculations of (n, 2n) and (n, p) reactions for 69,71Ga and 75As target nuclei up to 20 MeV
In the present research, neutron induced reaction cross sections of 69,71Ga(n, 2n), 69,71Ga(n, p), 75As(n, 2n) and 75As(n, p) were investigated up to 20 MeV. Three theoretical calculation codes (EMPIRE 3.2, TALYS 1.6 and ALICE/ASH) were used for model calculations based on the Weisskopf - Ewing and Hauser - Feshbach theories. The results of theoretical calculations were compared with some empirical formulas developed by different researches, with evaluated nuclear data sets (JENDL-4.0u2 (2012), TENDL-2015, JEFF-3.2 (2014), and ENDF/B-VIII.0 (2018)) and also with the available experimental data found in literature
Current Status of Baricitinib as a Repurposed Therapy for COVID-19
The emergence of the COVID-19 pandemic has mandated the instant (re)search for potential drug candidates. In response to the unprecedented situation, it was recognized early that repurposing of available drugs in the market could timely save lives, by skipping the lengthy phases of preclinical and initial safety studies. BenevolentAI’s large knowledge graph repository of structured medical information suggested baricitinib, a Janus-associated kinase inhibitor, as a potential repurposed medicine with a dual mechanism; hindering SARS-CoV2 entry and combatting the cytokine storm; the leading cause of mortality in COVID-19. However, the recently-published Adaptive COVID-19 Treatment Trial-2 (ACTT-2) positioned baricitinib only in combination with remdesivir for treatment of a specific category of COVID-19 patients, whereas the drug is not recommended to be used alone except in clinical trials. The increased pace of data output in all life sciences fields has changed our understanding of data processing and manipulation. For the purpose of drug design, development, or repurposing, the integration of different disciplines of life sciences is highly recommended to achieve the ultimate benefit of using new technologies to mine BIG data, however, the final say remains to be concluded after the drug is used in clinical practice. This review demonstrates different bioinformatics, chemical, pharmacological, and clinical aspects of baricitinib to highlight the repurposing journey of the drug and evaluates its placement in the current guidelines for COVID-19 treatment
Antibacterial Activity of Small Molecules Which Eradicate Methicillin-Resistant Staphylococcus aureus Persisters
The serious challenge posed by multidrug-resistant bacterial infections with concomitant treatment failure and high mortality rates presents an urgent threat to the global health. We herein report the discovery of a new class of potent antimicrobial compounds that are highly effective against Gram-positive bacteria, including methicillin-resistant Staphylococcus aureus (MRSA). The compounds were efficiently synthesized in one-pot employing a cascade of Groebke-Blackburn-Bienayme and aza-Michael addition reactions. Phenotypic screening of the pilot library against various bacterial species including methicillin-sensitive and MRSA strains, has identified potent chemotypes with minimal inhibitory concentrations (MIC) of 3.125-6.25 mu g/ml. The most potent compounds were fast-acting at eradicating exponentially growing MRSA, with killing achieved after 30 min of exposure to the compounds. They were also able to kill MRSA persister cells which are tolerant to most available medications. Microscopic analysis using fluorescence microscope and atomic force microscope indicate that these compounds lead to disruption of bacterial cell envelopes. Most notably, bacterial resistance toward these compounds was not observed after 20 serial passages in stark contrast to the significant resistance developed rapidly upon exposure to a clinically relevant antibiotic. Furthermore, the compounds did not induce significant hemolysis to human red blood cells. In vivo safety studies revealed a high safety profile of these motifs. These small molecules hold a promise for further studies and development as new antibacterial agents against MRSA infections.This work was supported by the generous grants from the
IsDB-Transformers Fund and the Research Funding Department,
University of Sharjah, UAE (CoV19-0306)
Bursts in the Chaotic Trajectory Lifetimes Preceding the Controlled Periodic Motion
The average lifetime () it takes for a randomly started trajectory
to land in a small region () on a chaotic attractor is studied. is
an important issue for controlling chaos. We point out that if the region
is visited by a short periodic orbit, the lifetime strongly deviates
from the inverse of the naturally invariant measure contained within that
region (). We introduce the formula that relates
to the expanding eigenvalue of the short periodic orbit
visiting .Comment: Accepted for publication in Phys. Rev. E, 3 PS figure
Self-pulsing effect in chaotic scattering
We study the quantum and classical scattering of Hamiltonian systems whose
chaotic saddle is described by binary or ternary horseshoes. We are interested
in parameters of the system for which a stable island, associated with the
inner fundamental periodic orbit of the system exists and is large, but chaos
around this island is well developed. In this situation, in classical systems,
decay from the interaction region is algebraic, while in quantum systems it is
exponential due to tunneling. In both cases, the most surprising effect is a
periodic response to an incoming wave packet. The period of this self-pulsing
effect or scattering echoes coincides with the mean period, by which the
scattering trajectories rotate around the stable orbit. This period of rotation
is directly related to the development stage of the underlying horseshoe.
Therefore the predicted echoes will provide experimental access to topological
information. We numerically test these results in kicked one dimensional models
and in open billiards.Comment: Submitted to New Journal of Physics. Two movies (not included) and
full-resolution figures are available at http://www.cicc.unam.mx/~mejia
A universal microfluidic approach for integrated analysis of temporal homocellular and heterocellular signaling and migration dynamics
Microfluidics offers precise and dynamic control of microenvironments for the study of temporal cellular responses. However, recent research focusing solely on either homocellular (single-cell, population) or heterocellular response may yield insufficient output, which possibly leads to partial comprehension about the underlying mechanisms of signaling events and corresponding cellular behaviors. Here, a universal microfluidic approach is developed for integrated analysis of temporal signaling and cell migration dynamics in multiple cellular contexts (single-cell, population and coculture). This approach allows to confine the desired number or mixture of specific cell sample types in a single device. Precise single cell seeding was achieved manually with bidirectional controllability. Coupled with time-lapse imaging, temporal cellular responses can be observed with single-cell resolution. Using NIH3T3 cells stably expressing signal transducer and activator of transcription 1/2 (STAT1/2) activity biosensors, temporal STAT1/2 activation and cell migration dynamics were explored in isolated single cells, populations and cocultures stimulated with temporal inputs, such as single-pulse and continuous signals of interferon γ (IFNγ) or lipopolysaccharide (LPS). We demonstrate distinct dynamic responses of fibroblasts in different cellular contexts. Our presented approach facilitates a multi-dimensional understanding of STAT signaling and corresponding migration behaviors
- …