9 research outputs found

    Genetic Dissection of the Canq1 Locus Governing Variation in Extent of the Collateral Circulation

    Get PDF
    <div><h3>Background</h3><p>Native (pre-existing) collaterals are arteriole-to-arteriole anastomoses that interconnect adjacent arterial trees and serve as endogenous bypass vessels that limit tissue injury in ischemic stroke, myocardial infarction, coronary and peripheral artery disease. Their extent (number and diameter) varies widely among mouse strains and healthy humans. We previously identified a major quantitative trait locus on chromosome 7 (<em>Canq1</em>, LOD = 29) responsible for 37% of the heritable variation in collateral extent between C57BL/6 and BALB/c mice. We sought to identify candidate genes in <em>Canq1</em> responsible for collateral variation in the cerebral pial circulation, a tissue whose strain-dependent variation is shared by similar variation in other tissues.</p> <h3>Methods and Findings</h3><p>Collateral extent was intermediate in a recombinant inbred line that splits <em>Canq1</em> between the C57BL/6 and BALB/c strains. Phenotyping and SNP-mapping of an expanded panel of twenty-one informative inbred strains narrowed the <em>Canq1</em> locus, and genome-wide linkage analysis of a SWRxSJL-F2 cross confirmed its haplotype structure. Collateral extent, infarct volume after cerebral artery occlusion, bleeding time, and re-bleeding time did not differ in knockout mice for two vascular-related genes located in <em>Canq1</em>, <em>IL4ra</em> and <em>Itgal</em>. Transcript abundance of 6 out of 116 genes within the 95% confidence interval of <em>Canq1</em> were differentially expressed >2-fold (p-value<0.05÷150) in the cortical <em>pia mater</em> from C57BL/6 and BALB/c embryos at E14.5, E16.5 and E18.5 time-points that span the period of collateral formation.</p> <h3>Conclusions</h3><p>These findings refine the <em>Canq1</em> locus and identify several genes as high-priority candidates important in specifying native collateral formation and its wide variation.</p> </div

    In vivo

    No full text
    In vivo electroporation has become a gold standard method for DNA immunization. The method assists the DNA entry into cells, results in expression and the display of the native form of antigens to professional cells of the immune system, uses both arms of immune system, has a built-in adjuvant system, is relatively safe, and is cost-effective. However, there are challenges for achieving an optimized reproducible process for eliciting strong humoral responses and for the screening of specific immune responses, in particular, when the aim is to mount humoral responses or to generate monoclonal antibodies via hybridoma technology. Production of monoclonal antibodies demands generation of high numbers of primed B and CD4 T helper cells in lymphoid organs needed for the fusion that traditionally is achieved by a final intravenous antigen injection. The purified antigen is also needed for screening of hundreds of clones obtained upon fusion of splenocytes. Such challenges make DNA vaccination dependent on purified proteins. Here, we have optimized methods for in vivo electroporation, production, and use of cells expressing the antigen and an in-cell Western screening method. These methods resulted in (1) reproducibly mounting robust humoral responses against antigens with different cell localizations, and (2) the ability to screen for antigen eliminating a need for protein/antigen purification. This process includes optimized parameters for in vivo electroporation, the use of transfected cells for final boost, and mild fixation/permeabilization of cells for screening. Using this process, upon two vaccinations via in vivo electroporation (and final boost), monoclonal antibodies against nucleus and cytoplasmic and transmembrane proteins were achieved

    Post-translational regulation of inflammasomes

    No full text

    Molecular mechanisms of intestinal inflammation leading to colorectal cancer

    No full text

    The Family Carnobacteriaceae

    No full text

    Salivary Diagnostics and the Oral Microbiome

    No full text
    corecore