6 research outputs found
Parapapillary choroidal microvascular density in acute primary angle-closure and primary open-angle glaucoma: an optical coherence tomography angiography study
Back ground/aims To determine whether parapapillary choroidal microvasculature (PPCMv) density, measured by optical coherence tomography angiography, differed between acute primary angle-closure (APAC), primary open-angle glaucoma (POAG) and controls.Methods This is a prospective, cross-sectional, observational study. Data from 149 eyes from two academic referral centres were analysed. Automated PPCMv density was calculated in inner and outer annuli around the optic nerve region in addition to the peripapillary superficial vasculature, using customised software. A generalised estimating equation was used to compare vessel densities among groups, adjusted for confounders.Results Data from 40 eyes with APAC, 65 eyes with POAG and 44 eyes in healthy controls were gathered and analysed. Global radial peripapillary capillary densities were reduced in eyes with APAC and POAG compared with controls (p=0.027 and 0.136, respectively). Mean outer annular PPCMv density in the POAG group was lower vs the APAC group by 3.6% (95% CI 0.6% to 6.5%) (p=0.018) in the multivariable model adjusted for confounders. The mean difference in inner and outer superior PPCMv between the POAG and APAC groups was 5.9% and 4.4% (95% CI 1.9% to 9.9% and 1.0% to 7.7%, respectively; both p<0.010). Furthermore, POAG and APAC groups both had significantly lower PPCMv compared with controls (both, p<0.001).Conclusions While superficial peripapillary vessels were affected to similar degrees in POAG and APAC, PPCMv drop-out was greater with POAG versus APAC, suggesting that choroidal vessel density may be affected to a lesser extent following an acute increase in intraocular pressure before glaucoma develops
Peripapillary perfused capillary density in true versus pseudoexfoliation syndrome: An OCTA study.
PurposeTo compare peripapillary perfused capillary density (PCD) among eyes with true exfoliation syndrome (TEX), eyes with pseudoexfoliation syndrome (PEX), and healthy control eyes.Materials and methodsIn this observational cross-sectional study, eyes with and without TEX or PEX were assessed by optical coherence tomography angiography (OCTA) imaging. Bilateral OCTA images (4.5 Ă— 4.5 mm2) centered at the optic nerve head were obtained using a commercial spectral domain OCTA system. Optic nerve head perfusion was quantified using the split-spectrum amplitude decorrelation angiography algorithm. Categorical and continuous variables were compared using the chi-squared test and one-way analysis of variance, respectively. The generalized estimating equation was used to adjust for confounding factors and determine inter-ocular associations.ResultsWe enrolled 39 eyes with TEX, 31 eyes with PEX, and 32 control eyes. There were no significant differences among the three groups regarding age, intraocular pressure, cup-to-disc ratio, blood pressure, or axial length (all p>0.05). There were significant differences in global PCD among the three groups (p = 0.01). There were significant differences in annular PCD between the TEX and PEX groups (p = 0.027).ConclusionsWhile both global and annular PCDs did not differ between the TEX and control groups, greater loss of annular PCD in the PEX group than in the TEX and control groups suggests more pronounced microvascular disturbance in PEX.Synopsis/precisGreater microvascular attenuation in PEX compared with TEX and normal control measured by OCTA
Qualitative and quantitative evaluation of acute angle-closure mechanisms
Abstract Background To evaluate ocular biometric parameters in different subtypes of acute angle closure and compared to fellow eyes of AAC and PACS eyes. Methods This is a retrospective chart review study. A total of 167 eyes (96 patients) consisting of 71 AAC eyes, 71 fellow eyes of AAC, and 25 PACS eyes were recruited. All patients underwent ocular examination and biometry. The mechanism of AAC was confirmed by ultrasound biomicroscopy. We then subdivided AAC eyes into four subgroups: crowded-angle (CR), lens subluxation (LS) pupillary block (PB), and plateau iris syndrome (PL). Outcome variables included anterior chamber depth (ACD), lens thickness (LT), vitreal length (VL), axial length (AL), lens position and relative lens position (LP and RLP, respectively), and lens axial length factor (LAF). Results Among the three groups, ACD was shallower in AAC eyes than fellow eyes of AAC and PACS eyes (p < 0.01 for both) and AAC eyes demonstrated a lesser LP and RLP. The LT, VL, AL, and LAF were not significantly different among the three groups. Among the four subgroups, LS displayed the most shallow ACD (p = 0.01). The lens position in PL was greater than in CR and LS (p < 0.05 and <0.01, respectively). Conclusions AAC eyes had a more anterior lens position than fellow eyes and PACS eyes, though lens thickness did not differ among the groups. As such, an anterior lens position may offer more sensitive prognostication regarding future development of AAC compared to lens thickness
Genetic Association Study Of Exfoliation Syndrome Identifies A Protective Rare Variant At Loxl1 And Five New Susceptibility Loci
Exfoliation syndrome (XFS) is the most common known risk factor for secondary glaucoma and a major cause of blindness worldwide. Variants in two genes, LOXL1 and CACNA1A, have previously been associated with XFS. To further elucidate the genetic basis of XFS, we collected a global sample of XFS cases to refine the association at LOXL1, which previously showed inconsistent results across populations, and to identify new variants associated with XFS. We identified a rare protective allele at LOXL1 (p.Phe407, odds ratio (OR) = 25, P = 2.9 x 10(-14)) through deep resequencing of XFS cases and controls from nine countries. A genome-wide association study (GWAS) of XFS cases and controls from 24 countries followed by replication in 18 countries identified seven genome-wide significant loci (P < 5 x 10(-8)). We identified association signals at 13q12 (POMP), 11q23.3 (TMEM136), 6p21 (AGPAT1), 3p24 (RBMS3) and 5q23 (near SEMA6A). These findings provide biological insights into the pathology of XFS and highlight a potential role for naturally occurring rare LOXL1 variants in disease biology.Wo