1,943 research outputs found
Algorithm for Determination of Orion Ascent Abort Mode Achievability
For human spaceflight missions, a launch vehicle failure poses the challenge of returning the crew safely to earth through environments that are often much more stressful than the nominal mission. Manned spaceflight vehicles require continuous abort capability throughout the ascent trajectory to protect the crew in the event of a failure of the launch vehicle. To provide continuous abort coverage during the ascent trajectory, different types of Orion abort modes have been developed. If a launch vehicle failure occurs, the crew must be able to quickly and accurately determine the appropriate abort mode to execute. Early in the ascent, while the Launch Abort System (LAS) is attached, abort mode selection is trivial, and any failures will result in a LAS abort. For failures after LAS jettison, the Service Module (SM) effectors are employed to perform abort maneuvers. Several different SM abort mode options are available depending on the current vehicle location and energy state. During this region of flight the selection of the abort mode that maximizes the survivability of the crew becomes non-trivial. To provide the most accurate and timely information to the crew and the onboard abort decision logic, on-board algorithms have been developed to propagate the abort trajectories based on the current launch vehicle performance and to predict the current abort capability of the Orion vehicle. This paper will provide an overview of the algorithm architecture for determining abort achievability as well as the scalar integration scheme that makes the onboard computation possible. Extension of the algorithm to assessing abort coverage impacts from Orion design modifications and launch vehicle trajectory modifications is also presented
Influence of the Magnetic Field on the Fermion Scattering off Bubble and Kink Walls
We investigate the scattering of fermions off domain walls at the electroweak
phase transition in presence of a magnetic field. We consider both the bubble
wall and the kink domain wall. We derive and solve the Dirac equation for
fermions with momentum perpendicular to the walls, and compute the transmission
and reflection coefficients. In the case of kink domain wall, we briefly
discuss the zero mode solutions localized on the wall. The possibile role of
the magnetic field for the electroweak baryogenesis is also discussed.Comment: 11 pages and 3 eps figure
Ellipsoidal Universe Can Solve The CMB Quadrupole Problem
The recent three-year WMAP data have confirmed the anomaly concerning the low
quadrupole amplitude compared to the best-fit \Lambda CDM prediction. We show
that, allowing the large-scale spatial geometry of our universe to be
plane-symmetric with eccentricity at decoupling or order 10^{-2}, the
quadrupole amplitude can be drastically reduced without affecting higher
multipoles of the angular power spectrum of the temperature anisotropy.Comment: 4 pages, 2 figures, minor changes, reference added, to appear in
Phys. Rev. Let
Dynamics of Ferromagnetic Walls: Gravitational Properties
We discuss a new mechanism which allows domain walls produced during the
primordial electroweak phase transition. We show that the effective surface
tension of these domain walls can be made vanishingly small due to a peculiar
magnetic condensation induced by fermion zero modes localized on the wall. We
find that in the perfect gas approximation the domain wall network behaves like
a radiation gas. We consider the recent high-red shift supernova data and we
find that the corresponding Hubble diagram is compatible with the presence in
the Universe of a ideal gas of ferromagnetic domain walls. We show that our
domain wall gas induces a completely negligible contribution to the large-scale
anisotropy of the microwave background radiation.Comment: Replaced with revised version, accepted for publication in IJMP
Evaluating surgical skills from kinematic data using convolutional neural networks
The need for automatic surgical skills assessment is increasing, especially
because manual feedback from senior surgeons observing junior surgeons is prone
to subjectivity and time consuming. Thus, automating surgical skills evaluation
is a very important step towards improving surgical practice. In this paper, we
designed a Convolutional Neural Network (CNN) to evaluate surgeon skills by
extracting patterns in the surgeon motions performed in robotic surgery. The
proposed method is validated on the JIGSAWS dataset and achieved very
competitive results with 100% accuracy on the suturing and needle passing
tasks. While we leveraged from the CNNs efficiency, we also managed to mitigate
its black-box effect using class activation map. This feature allows our method
to automatically highlight which parts of the surgical task influenced the
skill prediction and can be used to explain the classification and to provide
personalized feedback to the trainee.Comment: Accepted at MICCAI 201
Recommended from our members
Analysis of multiscale radiometric data collected during the Cold Land Processes Experiment-1 (CLPX-1)
Histograms of brightness temperatures collected at 18.7 and 37 GHz over the Fraser and North Park Meso-Scale Areas during the Cold Land Processes Experiment by the NOAA Polarimetric Scanning Radiometer (PSR/A) airborne sensor are modelled by a log-normal distribution (Fraser, forested area) and by a bi-modal distribution (North Park, patchy-snow, non-forested area). The brightness temperatures are re-sampled over a range of resolutions to study the effects of sensor resolution on the shape of the distribution, on the values of the average brightness temperatures and standard deviations. The histograms become more uniform and the spatial information in the initial distribution is lost for a resolution larger than 5000 m, in both areas. The values of brightness temperatures obtained by re-sampling the PSR-A data at 25 km resolution are consistent with those recorded by the Advanced Microwave Scanning Radiometer (AMSR-E) and Special Sensor Microwave/Imager (SSM/I) satellite radiometers at similar resolutions
Main Belt Asteroids with WISE/NEOWISE I: Preliminary Albedos and Diameters
We present initial results from the Wide-field Infrared Survey Explorer
(WISE), a four-band all-sky thermal infrared survey that produces data well
suited to measuring the physical properties of asteroids, and the NEOWISE
enhancement to the WISE mission allowing for detailed study of Solar system
objects. Using a NEATM thermal model fitting routine we compute diameters for
over 100,000 Main Belt asteroids from their IR thermal flux, with errors better
than 10%. We then incorporate literature values of visible measurements (in the
form of the H absolute magnitude) to determine albedos. Using these data we
investigate the albedo and diameter distributions of the Main Belt. As observed
previously, we find a change in the average albedo when comparing the inner,
middle, and outer portions of the Main Belt. We also confirm that the albedo
distribution of each region is strongly bimodal. We observe groupings of
objects with similar albedos in regions of the Main Belt associated with
dynamical breakup families. Asteroid families typically show a characteristic
albedo for all members, but there are notable exceptions to this. This paper is
the first look at the Main Belt asteroids in the WISE data, and only represents
the preliminary, observed raw size and albedo distributions for the populations
considered. These distributions are subject to survey biases inherent to the
NEOWISE dataset and cannot yet be interpreted as describing the true
populations; the debiased size and albedo distributions will be the subject of
the next paper in this series.Comment: Accepted to ApJ. Online table to also appear on the publisher's
websit
Germinação de Eragrostis plana Nees sob efeito do extrato de Achyrocline satureioides (Lam.) DC.
Resumo 31
- …