192 research outputs found

    The Ultraviolet View of the Magellanic Clouds from GALEX: A First Look at the LMC Source Catalog

    Get PDF
    The Galaxy Evolution Exporer (GALEX) has performed unprecedented imaging surveys of the Magellanic Clouds (MC) and their surrounding areas including the Magellanic Bridge (MB) in near-UV (NUV, 1771-2831\AA) and far-UV (FUV, 1344-1786\AA) bands at 5" resolution. Substantially more area was covered in the NUV than FUV, particularly in the bright central regions, because of the GALEX FUV detector failure. The 5σ\sigma depth of the NUV imaging varies between 20.8 and 22.7 (ABmag). Such imaging provides the first sensitive view of the entire content of hot stars in the Magellanic System, revealing the presence of young populations even in sites with extremely low star-formation rate surface density like the MB, owing to high sensitivity of the UV data to hot stars and the dark sky at these wavelengths. The density of UV sources is quite high in many areas of the LMC and SMC. Crowding limits the quality of source detection and photometry from the standard mission pipeline processing. We performed custom-photometry of the GALEX data in the MC survey region (<15∘<15^{\circ} from the LMC, <10∘<10^{\circ} from the SMC). After merging multiple detections of sources in overlapping images, the resulting catalog we have produced for the LMC contains nearly 6 million unique NUV point sources within 15∘^{\circ} and is briefly presented herein. This paper provides a first look at the GALEX MC survey and highlights some of the science investigations that the entire catalog and imaging dataset will make possible.Comment: 16 pages, 8 figures; J. Adv. Space Res. (2013

    The WiggleZ Dark Energy Survey: Galaxy Evolution at 0.25 ≤ z ≤ 0.75 Using the Second Red-Sequence Cluster Survey

    Get PDF
    We study the evolution of galaxy populations around the spectroscopic WiggleZ sample of star-forming galaxies at 0.25 ≤ z ≤ 0.75 using the photometric catalog from the Second Red-Sequence Cluster Survey (RCS2). We probe the optical photometric properties of the net excess neighbor galaxies. The key concept is that the marker galaxies and their neighbors are located at the same redshift, providing a sample of galaxies representing a complete census of galaxies in the neighborhood of star-forming galaxies. The results are compared with those using the RCS WiggleZ Spare-Fibre (RCS-WSF) sample as markers, representing galaxies in cluster environments at 0.25 ≤ z ≤ 0.45. By analyzing the stacked color-color properties of the WiggleZ neighbor galaxies, we find that their optical colors are not a strong function of indicators of star-forming activities such as EW([O II]) or Galaxy Evolution Explorer (GALEX) near-UV luminosity of the markers. The galaxies around the WiggleZ markers exhibit a bimodal distribution on the color-magnitude diagram, with most of them located in the blue cloud. The optical galaxy luminosity functions (GLFs) of the blue neighbor galaxies have a faint-end slope α of ~ –1.3, similar to that for galaxies in cluster environments drawn from the RCS-WSF sample. The faint-end slope of the GLF for the red neighbors, however, is ~ –0.4, significantly shallower than the ~ –0.7 found for those in cluster environments. This suggests that the buildup of the faint end of the red sequence in cluster environments is in a significantly more advanced stage than that in the star-forming and lower galaxy density WiggleZ neighborhoods. We find that the red galaxy fraction (f_red) around the star-forming WiggleZ galaxies has similar values from z ~ 0.3 to z ~ 0.6 with f_red ~ 0.28, but drops to f_red ~ 0.20 at z gsim 0.7. This change of f_red with redshift suggests that there is either a higher rate of star-forming galaxies entering the luminosity-limited sample at z ≳ 0.7, or a decrease in the quenching rate of star formation at that redshift. Comparing to that in a dense cluster environment, the f_red of the WiggleZ neighbors is both considerably smaller and has a more moderate change with redshift, pointing to the stronger and more prevalent environmental influences on galaxy evolution in high-density regions

    WiggleZ Dark Energy Survey: Cosmological neutrino mass constraint from blue high-redshift galaxies

    Get PDF
    The absolute neutrino mass scale is currently unknown, but can be constrained by cosmology. The WiggleZ high redshift, star-forming, and blue galaxy sample offers a complementary data set to previous surveys for performing these measurements, with potentially different systematics from nonlinear structure formation, redshift-space distortions, and galaxy bias. We obtain a limit of ∑m_ν<0.60  eV (95% confidence) for WiggleZ+Wilkinson Microwave Anisotropy Probe. Combining with priors on the Hubble parameter and the baryon acoustic oscillation scale gives ∑m_ν<0.29  eV, which is the strongest neutrino mass constraint derived from spectroscopic galaxy redshift surveys

    C32, A Young Star Cluster in IC 1613

    Get PDF
    The Local Group irregular galaxy IC 1613 has remained an enigma for many years because of its apparent lack of star clusters. We report the successful search for clusters among several of the candidate objects identified many years ago on photographic plates. We have used a single HST WFPC2 pointing and a series of images obtained with the WIYN telescope under exceptional seeing conditions, examining a total of 23 of the previously published candidates. All but six of these objects were found to be either asterisms or background galaxies. Five of the six remaining candidates possibly are small, sparse clusters and the sixth, C32, is an obvious cluster. It is a compact, young object, with an age of less than 10 million years and a total absolute magnitude of M_V = -5.78+/-0.16 within a radius of 13 pc.Comment: 5 pages, 5 figures, to be published in the May 2000 issue of the PAS

    The WiggleZ Dark Energy Survey: high-resolution kinematics of luminous star-forming galaxies

    Get PDF
    We report evidence of ordered orbital motion in luminous star-forming galaxies at z~ 1.3. We present integral field spectroscopy (IFS) observations, performed with the OH Suppressing InfraRed Imaging Spectrograph (OSIRIS) system, assisted by laser guide star adaptive optics on the Keck telescope, of 13 star-forming galaxies selected from the WiggleZ Dark Energy Survey. Selected via ultraviolet and [O ii] emission, the large volume of the WiggleZ survey allows the selection of sources which have comparable intrinsic luminosity and stellar mass to IFS samples at z > 2. Multiple 1–2 kpc size subcomponents of emission, or ‘clumps’, are detected within the Hα spatial emission which extends over 6–10 kpc in four galaxies, resolved compact emission (r 100 km s^(−1)) in the most compact sources. This unique data set reveals that the most luminous star-forming galaxies at z > 1 are gaseous unstable discs indicating that a different mode of star formation could be feeding gas to galaxies at z > 1, and lending support to theories of cold dense gas flows from the intergalactic medium

    The WiggleZ Dark Energy Survey: testing the cosmological model with baryon acoustic oscillations at z = 0.6

    Get PDF
    We measure the imprint of baryon acoustic oscillations (BAOs) in the galaxy clustering pattern at the highest redshift achieved to date, z= 0.6, using the distribution of N= 132 509 emission-line galaxies in the WiggleZ Dark Energy Survey. We quantify BAOs using three statistics: the galaxy correlation function, power spectrum and the band-filtered estimator introduced by Xu et al. The results are mutually consistent, corresponding to a 4.0 per cent measurement of the cosmic distance–redshift relation at z= 0.6 [in terms of the acoustic parameter ‘A(z)’ introduced by Eisenstein et al., we find A(z= 0.6) = 0.452 ± 0.018]. Both BAOs and power spectrum shape information contribute towards these constraints. The statistical significance of the detection of the acoustic peak in the correlation function, relative to a wiggle-free model, is 3.2σ. The ratios of our distance measurements to those obtained using BAOs in the distribution of luminous red galaxies at redshifts z= 0.2 and 0.35 are consistent with a flat Λ cold dark matter model that also provides a good fit to the pattern of observed fluctuations in the cosmic microwave background radiation. The addition of the current WiggleZ data results in a ≈30 per cent improvement in the measurement accuracy of a constant equation of state, w, using BAO data alone. Based solely on geometric BAO distance ratios, accelerating expansion (w < −1/3) is required with a probability of 99.8 per cent, providing a consistency check of conclusions based on supernovae observations. Further improvements in cosmological constraints will result when the WiggleZ survey data set is complete

    The WiggleZ Dark Energy Survey: Final data release and cosmological results

    Get PDF
    This paper presents cosmological results from the final data release of the WiggleZ Dark Energy Survey. We perform full analyses of different cosmological models using the WiggleZ power spectra measured at z=0.22, 0.41, 0.60, and 0.78, combined with other cosmological data sets. The limiting factor in this analysis is the theoretical modeling of the galaxy power spectrum, including nonlinearities, galaxy bias, and redshift-space distortions. In this paper we assess several different methods for modeling the theoretical power spectrum, testing them against the Gigaparsec WiggleZ simulations (GiggleZ). We fit for a base set of six cosmological parameters, {Ω_(b)h^2,Ω_(CDM)h^2,H_0,τ,A_s,n_s}, and five supplementary parameters {n_(run),r,w,Ω_k,∑m_ν}. In combination with the cosmic microwave background, our results are consistent with the ΛCDM concordance cosmology, with a measurement of the matter density of Ωm=0.29±0.016 and amplitude of fluctuations σ_8=0.825±0.017. Using WiggleZ data with cosmic microwave background and other distance and matter power spectra data, we find no evidence for any of the extension parameters being inconsistent with their ΛCDM model values. The power spectra data and theoretical modeling tools are available for use as a module for CosmoMC, which we here make publicly available at http://smp.uq.edu.au/wigglez-data. We also release the data and random catalogs used to construct the baryon acoustic oscillation correlation function
    • …
    corecore