2 research outputs found
Interaction Behavior of Biogenic Material with Electric Arc Furnace Slag
Electric arc furnaces (EAFs) are used for steel production, particularly when recycling scrap material. In EAFs, carbonaceous material is charged with other raw materials or injected into molten slag to generate foam on top of liquid metal to increase energy efficiency. However, the consumption of fossil carbon leads to greenhouse gas emissions (GHGs). To reduce net GHG emissions from EAF steelmaking, the substitution of fossil carbon with sustainable biogenic carbon can be applied. This study explores the possibility of the substitution of fossil material with biogenic material produced by different pyrolysis methods and from various raw materials in EAF steelmaking processes. Experimental work was performed to study the effect of biogenic material utilization on steel and slag composition using an induction melting furnace with 50 kg of steel capacity. The interaction of biogenic material derived from different raw materials and pyrolysis processes with molten synthetic slag was also investigated using a tensiometer. Relative to other biogenic materials tested, a composite produced with densified softwood had higher intensity interfacial reactions with slag, which may be attributed to the rougher surface morphology of the densified biogenic material
Interaction Behavior of Biogenic Material with Electric Arc Furnace Slag
Electric arc furnaces (EAFs) are used for steel production, particularly when recycling scrap material. In EAFs, carbonaceous material is charged with other raw materials or injected into molten slag to generate foam on top of liquid metal to increase energy efficiency. However, the consumption of fossil carbon leads to greenhouse gas emissions (GHGs). To reduce net GHG emissions from EAF steelmaking, the substitution of fossil carbon with sustainable biogenic carbon can be applied. This study explores the possibility of the substitution of fossil material with biogenic material produced by different pyrolysis methods and from various raw materials in EAF steelmaking processes. Experimental work was performed to study the effect of biogenic material utilization on steel and slag composition using an induction melting furnace with 50 kg of steel capacity. The interaction of biogenic material derived from different raw materials and pyrolysis processes with molten synthetic slag was also investigated using a tensiometer. Relative to other biogenic materials tested, a composite produced with densified softwood had higher intensity interfacial reactions with slag, which may be attributed to the rougher surface morphology of the densified biogenic material