102 research outputs found

    Developing a Cell-Microcarrier Tissue-Engineered Product for Muscle Repair Using a Bioreactor System

    Get PDF
    Fecal incontinence, although not life-threatening, has a high impact on the economy and patient quality of life. So far, available treatments are based on both surgical and nonsurgical approaches. These can range from changes in diet, to bowel training, or sacral nerve stimulation, but none of which provides a long-term solution. New regenerative medicine-based therapies are emerging, which aim at regenerating the sphincter muscle and restoring continence. Usually, these consist of the administration of a suspension of expanded skeletal-derived muscle cells (SkMDCs) to the damaged site. However, this strategy often results in a reduced cell viability due to the need for cell harvesting from the expansion platform, as well as the non-native use of a cell suspension to deliver the anchorage-dependent cells. In this study, we propose the proof-of-concept for the bioprocessing of a new cell delivery method for the treatment of fecal incontinence, obtained by a scalable two-step process. First, patient-isolated SkMDCs were expanded using planar static culture systems. Second, by using a single-use PBS-MINI Vertical-Wheel® bioreactor, the expanded SkMDCs were combined with biocompatible and biodegradable (i.e., directly implantable) poly(lactic-co-glycolic acid) microcarriers prepared by thermally induced phase separation. This process allowed for up to 80% efficiency of SkMDCs to attach to the microcarriers. Importantly, SkMDCs were viable during all the process and maintained their myogenic features (e.g., expression of the CD56 marker) after adhesion and culture on the microcarriers. When SkMDC-containing microcarriers were placed on a culture dish, cells were able to migrate from the microcarriers onto the culture surface and differentiate into multinucleated myotubes, which highlights their potential to regenerate the damaged sphincter muscle after administration into the patient. Overall, this study proposes an innovative method to attach SkMDCs to biodegradable microcarriers, which can provide a new treatment for fecal incontinence

    The level of origin firing inversely affects the rate of replication fork progression

    Get PDF
    DNA damage slows DNA synthesis at replication forks; however, the mechanisms remain unclear. Cdc7 kinase is required for replication origin activation, is a target of the intra-S checkpoint, and is implicated in the response to replication fork stress. Remarkably, we found that replication forks proceed more rapidly in cells lacking Cdc7 function than in wild-type cells. We traced this effect to reduced origin firing, which results in fewer replication forks and a consequent decrease in Rad53 checkpoint signaling. Depletion of Orc1, which acts in origin firing differently than Cdc7, had similar effects as Cdc7 depletion, consistent with decreased origin firing being the source of these defects. In contrast, mec1-100 cells, which initiate excess origins and also are deficient in checkpoint activation, showed slower fork progression, suggesting the number of active forks influences their rate, perhaps as a result of competition for limiting factors

    Meniscus tear developed by pulling of the anomalous insertion of medial meniscus on anterior cruciate ligament

    Get PDF
    There is no report regarding a medial meniscus tear arising from an anomalous insertion of medial meniscus on the ACL, which seemed to be developed by the same mechanism as ACL tear. A case of a combined medial meniscus tear with ACL tear in the presence of an anomalous insertion of the medial meniscus on the ACL is reported

    A long-term record of early to mid-Paleozoic marine redox change

    Get PDF
    The extent to which Paleozoic oceans differed from Neoproterozoic oceans and the causal relationship between biological evolution and changing environmental conditions are heavily debated. Here, we report a nearly continuous record of seafloor redox change from the deep-water upper Cambrian to Middle Devonian Road River Group of Yukon, Canada. Bottom waters were largely anoxic in the Richardson trough during the entirety of Road River Group deposition, while independent evidence from iron speciation and Mo/U ratios show that the biogeochemical nature of anoxia changed through time. Both in Yukon and globally, Ordovician through Early Devonian anoxic waters were broadly ferruginous (nonsulfidic), with a transition toward more euxinic (sulfidic) conditions in the mid–Early Devonian (Pragian), coincident with the early diversification of vascular plants and disappearance of graptolites. This ~80-million-year interval of the Paleozoic characterized by widespread ferruginous bottom waters represents a persistence of Neoproterozoic-like marine redox conditions well into the Phanerozoic

    Efficiency of Collisionally-activated dissociation and 193-nm photodissociation of peptide ions in fourier transform mass spectrometry

    Get PDF
    AbstractFor tandem mass spectrometry, the Fourier transform instrument exhibits advantages for the use of collisionally-activated dissociation (CAD). The CAD energy deposited in larger ions can be greatly increased by extending the collision time to as much as 120 s, and the efficiency of trapping and measuring CAD product ions in many times greater than the found for triple-quadrupole or magnetic sector instruments, although the increased pressure from the collision gas is an offsetting disadvantage. A novel system that uses the same laser for photodesorption of ions and their subsequent photodissociation can produce complete dissociation of larger oligopeptide ions and unusually abundant fragment ions. In comparison to CAD, much more internal energy can be deposited in the primary ions using 193-nm photons, sufficient to dissociate peptide ions of m/z > 2000. Mass spectra closely resembling ion photodissociation spectra can also be obtained by neutral photodissociation (193-nm laser irradiation of the sample) followed by ion photodesorption

    Eucapnic Voluntary Hyperpnea: Gold Standard for Diagnosing Exercise-Induced Bronchoconstriction in Athletes?

    Get PDF
    In athletes, a secure diagnos is of exercise-induced bronchoconstriction (EIB) is dependent on objective testing. Evaluating spirometric indices of airflow before and following an exercise bout is intuitively the optimal means for the diagnosis; however, this approach is recognized as having several key limitations. Accordingly, alternative indirect bronchoprovocation tests have been recommended as surrogate means for obtaining a diagnosis of EIB. Of these tests, it is often argued that the eucapnic voluntary hyperpnea (EVH) challenge represents the ‘gold standard’. This article provides a state-of-the-art review of EVH, including an overview of the test methodology and its interpretation. We also address the performance of EVH against the other functional and clinical approaches commonly adopted for the diagnosis of EIB. The published evidence supports a key role for EVH in the diagnostic algorithm for EIB testing in athletes. However, its wide sensitivity and specificity and poor repeatability preclude EVH from being termed a ‘gold standard’ test for EIB

    End-stage extension of the knee and its influence on tibial tuberosity-trochlear groove distance (TTTG) in asymptomatic volunteers

    Full text link
    PURPOSE: Increased tibial tuberosity-trochlear groove distance (TTTG) is one potential correcting parameter in patients suffering from lateral patellar instability. It was hypothesized that end-stage extension of the knee might influence the TTTG distance on MR images. METHODS: Transverse T1-weighted MR images of the knee were acquired at full extension, 15° and 30° flexion of the knee in 30 asymptomatic volunteers. MRI parameters: slice thickness: 3 mm, matrix: 256 × 384, FOV: 150 × 150 mm. Two observers independently measured the TTTG at all positions. RESULTS: Mean TTTG for observer 1 was 15.1 ± 3.2 mm at full extension, 10.0 ± 3.5 mm at 15° flexion and 8.1 ± 3.4 mm at 30° flexion. Mean TTTG for observer 2: 14.8 ± 3.3 mm at full extension, 9.4 ± 3.0 mm at 15° flexion, 8.6 ± 3.4 mm at 30° flexion. Mean values were significantly different (p < 0.001) between full extension and 15° as well as 30° flexion for both observers. Mean values were significantly different (p < 0.001) between 15° and 30° for observer 1, but not for observer 2 (n.s.). Interobserver agreement was very good (intraclass correlation coefficient: 0.87-0.88; p < 0.001). CONCLUSIONS: The TTTG increases significantly at the end-stage extension of the knee. Therefore, the comparability of published TTTG values measured on radiographs, CT and MRI at various flexion/extension angles of the knee are limited. LEVEL OF EVIDENCE: Development of diagnostic criteria in a consecutive series of patients and a universally applied 'gold' standard, Level II

    Torsional stability of interference screws derived from bovine bone - a biomechanical study

    Get PDF
    Introduction: It has been proposed that individual genetic variation contributes to the course of severe infections and sepsis. Recent studies of single nucleotide polymorphisms (SNPs) within the endotoxin receptor and its signaling system showed an association with the risk of disease development. This study aims to examine the response associated with genetic variations of TLR4, the receptor for bacterial LPS, and a central intracellular signal transducer (TIRAP/Mal) on cytokine release and for susceptibility and course of severe hospital acquired infections in distinct patient populations. Methods: Three intensive care units in tertiary care university hospitals in Greece and Germany participated. 375 and 415 postoperative patients and 159 patients with ventilator associated pneumonia (VAP) were included. TLR4 and TIRAP/Mal polymorphisms in 375 general surgical patients were associated with risk of infection, clinical course and outcome. In two prospective studies, 415 patients following cardiac surgery and 159 patients with newly diagnosed VAP predominantly caused by Gram-negative bacteria were studied for cytokine levels in-vivo and after ex-vivo monocyte stimulation and clinical course. Results: Patients simultaneously carrying polymorphisms in TIRAP/Mal and TLR4 and patients homozygous for the TIRAP/Mal SNP had a significantly higher risk of severe infections after surgery (odds ratio (OR) 5.5; confidence interval (CI): 1.34 - 22.64; P = 0.02 and OR: 7.3; CI: 1.89 - 28.50; P < 0.01 respectively). Additionally we found significantly lower circulating cytokine levels in double-mutant individuals with ventilator associated pneumonia and reduced cytokine production in an ex-vivo monocyte stimulation assay, but this difference was not apparent in TIRAP/Mal-homozygous patients. In cardiac surgery patients without infection, the cytokine release profiles were not changed when comparing different genotypes. Conclusions: Carriers of mutations in sequential components of the TLR signaling system may have an increased risk for severe infections. Patients with this genotype showed a decrease in cytokine release when infected which was not apparent in patients with sterile inflammation following cardiac surgery
    corecore