3 research outputs found
The developmental transcriptome of the human brain
Purpose of reviewRecent characterizations of the transcriptome of the developing human brain by several groups have generated comprehensive datasets on coding and noncoding RNAs that will be instrumental for illuminating the underlying biology of complex neurodevelopmental disorders. This review summarizes recent studies successfully utilizing these data to increase our understanding of the molecular mechanisms of pathogenesis.Recent findingsSeveral approaches have successfully integrated developmental transcriptome data with gene discovery to generate testable hypotheses about when and where in the developing human brain disease-associated genes converge. Specifically, these include the projection neurons in the prefrontal and primary motor--somatosensory cortex during mid-fetal development in autism spectrum disorder and the frontal cortex during fetal development in schizophrenia.SummaryDevelopmental transcriptome data is a key to interpreting disease-associated mutations and transcriptional changes. Novel approaches integrating the spatial and temporal dimensions of these data have increased our understanding of when and where disease occurs. Refinement of spatial and temporal properties and expanding these findings to other neurodevelopmental disorders will provide critical insights for understanding disease biology
Recommended from our members
Whole-Genome and RNA Sequencing Reveal Variation and Transcriptomic Coordination in the Developing Human Prefrontal Cortex.
Gene expression levels vary across developmental stage, cell type, and region in the brain. Genomic variants also contribute to the variation in expression, and some neuropsychiatric disorder loci may exert their effects through this mechanism. To investigate these relationships, we present BrainVar, a unique resource of paired whole-genome and bulk tissue RNA sequencing from the dorsolateral prefrontal cortex of 176 individuals across prenatal and postnatal development. Here we identify common variants that alter gene expression (expression quantitative trait loci [eQTLs]) constantly across development or predominantly during prenatal or postnatal stages. Both "constant" and "temporal-predominant" eQTLs are enriched for loci associated with neuropsychiatric traits and disorders and colocalize with specific variants. Expression levels of more than 12,000 genes rise or fall in a concerted late-fetal transition, with the transitional genes enriched for cell-type-specific genes and neuropsychiatric risk loci, underscoring the importance of cataloging developmental trajectories in understanding cortical physiology and pathology