5 research outputs found
Demography of obscured and unobscured AGN: prospects for a Wide Field X-ray Telescope
We discuss some of the main open issues in the evolution of Active Galactic
Nuclei which can be solved by the sensitive, wide area surveys to be performed
by the proposed Wide Field X-ray Telescope mission.Comment: Proceedings of "The Wide Field X-ray Telescope Workshop", held in
Bologna, Italy, Nov. 25-26 2009. To appear in Memorie della Societa'
Astronomica Italiana 2010 (arXiv:1010.5889
Simulating the WFXT sky
We investigate the scientific impact of the Wide Field X-ray Telescope
mission. We present simulated images and spectra of X-ray sources as observed
from the three surveys planned for the nominal 5-year WFXT lifetime. The goal
of these simulations is to provide WFXT images of the extragalactic sky in
different energy bands based on accurate description of AGN populations, normal
and star forming galaxies, groups and clusters of galaxies. The images are
realized using a detailed PSF model, instrumental and physical
backgrounds/foregrounds, accurate model of the effective area and the related
vignetting effect. Thanks to this comprehensive modelization of the WFXT
properties, the simulated images can be used to evaluate the flux limits for
detection of point and extended sources, the effect of source confusion at very
faint fluxes, and in general the efficiency of detection algorithms. We also
simulate the spectra of the detected sources, in order to address specific
science topics which are unique to WFXT. Among them, we focus on the
characterization of the Intra Cluster Medium (ICM) of high-z clusters, and in
particular on the measurement of the redshift from the ICM spectrum in order to
build a cosmological sample of galaxy clusters. The end-to-end simulation
procedure presented here, is a valuable tool in optimizing the mission design.
Therefore, these simulations can be used to reliably characterize the WFXT
discovery space and to verify the connection between mission requirements and
scientific goals. Thanks to this effort, we can conclude on firm basis that an
X-ray mission optimized for surveys like WFXT is necessary to bring X-ray
astronomy at the level of the optical, IR, submm and radio wavebands as
foreseen in the coming decade.Comment: "Proceedings of "The Wide Field X-ray Telescope Workshop", held in
Bologna, Italy, Nov. 25-26 2009. To appear in Memorie della Societa
Astronomica Italiana 2010 (arXiv:1010.5889)
Demography of obscured and unobscured AGN: prospects for a Wide Field X-ray Telescope
We discuss some of the main open issues in the evolution of Active Galactic Nuclei which can be solved by the sensitive, wide area surveys to be performed by the proposed Wide Field X-ray Telescope mission
Simulating the WFXT sky
We investigate the scientific impact of the Wide Field X-ray Telescope mission. We present simulated images and spectra of X-ray sources as observed from the three surveys planned for the nominal 5-year WFXT lifetime. The goal of these simulations is to provide WFXT images of the extragalactic sky in different energy bands based on accurate description of AGN populations, normal and star forming galaxies, groups and clusters of galaxies. The images are realized using a detailed PSF model, instrumental and physical backgrounds/foregrounds, accurate model of the effective area and the related vignetting effect. The simulated images can be used to evaluate the flux limits for detection of point and extended sources, the effect of source confusion at very faint fluxes, and in general the efficiency of detection algorithms. We also simulate the spectra of the detected sources, in order to address specific science topics which are unique to WFXT. Among them, we focus on the characterization of the Intra Cluster Medium (ICM) of high-z clusters, and in particular on the measurement of the redshift from the ICM spectrum in order to build a cosmological sample of galaxy clusters. The end-to-end simulation procedure presented here, is a valuable tool in optimizing the mission design, characterizing the WFXT discovery space and verifying the connection between mission requirements and scientific goals. Thanks to this effort, we can conclude on firm basis that an X-ray mission optimized for surveys like WFXT is necessary to bring X-ray astronomy at the level of the optical, IR, submm and radio wavebands as foreseen in the coming decade
Wide Field X-ray Telescope: Mission Overview
The Wide Field X-Ray Telescope (WFXT) is a medium-class mission designed to be 2-orders-of-magnitude more sensitive than any previous or planned X-ray mission for large area surveys and to match in sensitivity the next generation of wide-area optical, IR and radio surveys. Using an innovative wide-field X-ray optics design, WFXT provides a field of view of 1 square degree (10 times Chandra) with an angular resolution of 5'' (Half Energy Width, HEW) nearly constant over the entire field of view, and a large collecting area (up to 1 m2 at 1 keV, >10x Chandra) over the 0.1-7 keV band. WFXT's low-Earth orbit also minimizes the particle background. In five years of operation, WFXT will carry out three extragalactic surveys at unprecedented depth and address outstanding questions in astrophysics, cosmology and fundamental physics. In this article, we illustrate the mission concept and the connection between science requirements and mission parameters