22 research outputs found

    Preliminary evaluation of a liquid belt radiator for space applications

    Get PDF
    The liquid belt radiator (LBR) is discussed. The LBR system operates either in the sensible heat mode or in the latent heat mode. Parametric analysis shows that the LBR may reduce the mass of heat pipe radiators by 70 to 90% when the LBR surface has a total emissivity in excess of 0.3. It is indicated that the diffusion pump oils easily meet this criteria with emissivities greater than 0.8. Measurements on gallium indicate that its emissivity is probably in excess of 0.3 in the solid state when small amounts of impurities are on the surface. The point design exhibits a characteristic mass of 3.1 kg/kW of power dissipation, a mass per unit prime radiating area of approximately 0.9 kg/sq ms and a total package volume of approximately 2.50 cubic m. This compares favorably with conventional technologies which have weights on the order of 4 kg/sq m

    Liquid belt radiator design study

    Get PDF
    The Liquid Belt Radiator (LBR) is an advanced concept developed to meet the needs of anticipated future space missions. A previous study documented the advantages of this concept as a lightweight, easily deployable alternative to present day space heat rejection systems. The technical efforts associated with this study concentrate on refining the concept of the LBR as well as examining the issues of belt dynamics and potential application of the LBR to intermediate and high temperature heat rejection applications. A low temperature point design developed in previous work is updated assuming the use of diffusion pump oil, Santovac-6, as the heat transfer media. Additional analytical and design effort is directed toward determining the impact of interface heat exchanger, fluid bath sealing, and belt drive mechanism designs on system performance and mass. The updated design supports the earlier result by indicating a significant reduction in system specific system mass as compared to heat pipe or pumped fluid radiator concepts currently under consideration (1.3 kg/sq m versus 5 kg/sq m)

    Catalog of selected heavy duty transport energy management models

    Get PDF
    A catalog of energy management models for heavy duty transport systems powered by diesel engines is presented. The catalog results from a literature survey, supplemented by telephone interviews and mailed questionnaires to discover the major computer models currently used in the transportation industry in the following categories: heavy duty transport systems, which consist of highway (vehicle simulation), marine (ship simulation), rail (locomotive simulation), and pipeline (pumping station simulation); and heavy duty diesel engines, which involve models that match the intake/exhaust system to the engine, fuel efficiency, emissions, combustion chamber shape, fuel injection system, heat transfer, intake/exhaust system, operating performance, and waste heat utilization devices, i.e., turbocharger, bottoming cycle

    Extended hydrodynamics from Enskog's equation for a two-dimensional system general formalism

    Full text link
    Balance equations are derived from Enskog's kinetic equation for a two-dimensional system of hard disks using Grad's moment expansion method. This set of equations constitute an extended hydrodynamics for moderately dense bi-dimensional fluids. The set of independent hydrodynamic fields in the present formulations are: density, velocity, temperature {\em and also}--following Grad's original idea--the symmetric and traceless pressure tensor pijp_{ij} and the heat flux vector qk\mathbf q^{k}. An approximation scheme similar in spirit to one made by Grad in his original work is made. Once the hydrodynamics is derived it is used to discuss the nature of a simple one-dimensional heat conduction problem. It is shown that, not too far from equilibrium, the nonequilibrium pressure in this case only depends on the density, temperature and heat flux vector.Comment: :9 pages, 1 figure, This will appear in J. Stat. Phys. with minor corrections and corresponds to Ref[9] of cond-mat/050710

    The COS Legacy Archive Spectroscopy SurveY (CLASSY) Treasury Atlas

    Full text link
    Far-ultraviolet (FUV; ~1200-2000 angstroms) spectra are fundamental to our understanding of star-forming galaxies, providing a unique window on massive stellar populations, chemical evolution, feedback processes, and reionization. The launch of JWST will soon usher in a new era, pushing the UV spectroscopic frontier to higher redshifts than ever before, however, its success hinges on a comprehensive understanding of the massive star populations and gas conditions that power the observed UV spectral features. This requires a level of detail that is only possible with a combination of ample wavelength coverage, signal-to-noise, spectral-resolution, and sample diversity that has not yet been achieved by any FUV spectral database. We present the COS Legacy Spectroscopic SurveY (CLASSY) treasury and its first high level science product, the CLASSY atlas. CLASSY builds on the HST archive to construct the first high-quality (S/N_1500 >~ 5/resel), high-resolution (R~15,000) FUV spectral database of 45 nearby (0.002 < z < 0.182) star-forming galaxies. The CLASSY atlas, available to the public via the CLASSY website, is the result of optimally extracting and coadding 170 archival+new spectra from 312 orbits of HST observations. The CLASSY sample covers a broad range of properties including stellar mass (6.2 < logM_star(M_sol) < 10.1), star formation rate (-2.0 < log SFR (M_sol/yr) < +1.6), direct gas-phase metallicity (7.0 < 12+log(O/H) < 8.8), ionization (0.5 < O_32 < 38.0), reddening (0.02 < E(B-V < 0.67), and nebular density (10 < n_e (cm^-3) < 1120). CLASSY is biased to UV-bright star-forming galaxies, resulting in a sample that is consistent with z~0 mass-metallicity relationship, but is offset to higher SFRs by roughly 2 dex, similar to z >~2 galaxies. This unique set of properties makes the CLASSY atlas the benchmark training set for star-forming galaxies across cosmic time.Comment: Accepted for publication in Ap

    Search for eccentric black hole coalescences during the third observing run of LIGO and Virgo

    Get PDF
    Despite the growing number of confident binary black hole coalescences observed through gravitational waves so far, the astrophysical origin of these binaries remains uncertain. Orbital eccentricity is one of the clearest tracers of binary formation channels. Identifying binary eccentricity, however, remains challenging due to the limited availability of gravitational waveforms that include effects of eccentricity. Here, we present observational results for a waveform-independent search sensitive to eccentric black hole coalescences, covering the third observing run (O3) of the LIGO and Virgo detectors. We identified no new high-significance candidates beyond those that were already identified with searches focusing on quasi-circular binaries. We determine the sensitivity of our search to high-mass (total mass M&gt;70 M⊙) binaries covering eccentricities up to 0.3 at 15 Hz orbital frequency, and use this to compare model predictions to search results. Assuming all detections are indeed quasi-circular, for our fiducial population model, we place an upper limit for the merger rate density of high-mass binaries with eccentricities 0&lt;e≤0.3 at 0.33 Gpc−3 yr−1 at 90\% confidence level

    Observation of gravitational waves from the coalescence of a 2.5−4.5 M⊙ compact object and a neutron star

    Get PDF

    Ultralight vector dark matter search using data from the KAGRA O3GK run

    Get PDF
    Among the various candidates for dark matter (DM), ultralight vector DM can be probed by laser interferometric gravitational wave detectors through the measurement of oscillating length changes in the arm cavities. In this context, KAGRA has a unique feature due to differing compositions of its mirrors, enhancing the signal of vector DM in the length change in the auxiliary channels. Here we present the result of a search for U(1)B−L gauge boson DM using the KAGRA data from auxiliary length channels during the first joint observation run together with GEO600. By applying our search pipeline, which takes into account the stochastic nature of ultralight DM, upper bounds on the coupling strength between the U(1)B−L gauge boson and ordinary matter are obtained for a range of DM masses. While our constraints are less stringent than those derived from previous experiments, this study demonstrates the applicability of our method to the lower-mass vector DM search, which is made difficult in this measurement by the short observation time compared to the auto-correlation time scale of DM
    corecore