116,234 research outputs found
Developing a grid computing system for commercial-off-the-shelf simulation packages
Today simulation is becoming an increasingly
pervasive technology across major business
sectors. Advances in COTS Simulation Packages
and Commercial Simulation Software have made
it easier for users to build models, often of large complex processes. These two factors combined are to be welcomed and when used correctly can be of great benefit to organisations that make use of the technology. However, it is also the case
that users hungry for answers do not always have the time, or possibly the patience, to wait for results from multiple replications and multiple experiments as standard simulation practice would demand. There is therefore a need to support this advance in the use of simulation within todayâs business with improved computing technology. Grid computing has been put forward as a potential commercial solution to this requirement. To this end, Saker Solutions and the Distributed Systems Research Group at Brunel University have developed a dedicated Grid Computing System (SakerGrid) to support the deployment of simulation models across a desktop grid of PCs. The paper identifies route taken to solve this challenging issue and suggests where the future may lie for this exciting integration of two effective but underused technologies
Apollo communications system support. Improvements in contact printing and metal masking techniques Final report, 1 Aug. 1967 - 29 Mar. 1968
Production methods for contact prints in emulsions or chromium coated glass plat
A methodology for the decomposition of discrete event models for parallel simulation
Parallel simulation has presented the possibility of performing high-speed simulation. However, when attempting to make a link between the requirements of parallel simulation and discrete event simulation used in commercial areas such as manufacturing, a major problem arises. This lies in the decomposition of the simulation into a series of concurrently executing objects. Using the activity cycle diagram simulation technique as an illustrative example, this paper suggests a solution to this decomposition problem. This is discussed within the context of providing a conceptually seamless methodology for translating simulation models into a form which can exploit the benefits of parallel computing
Recommended from our members
Of Flyers and Free Speech: How Student Activism Defined the Contours of One Universityâs 21st-Century Hate and Bias Policy
Since 1999, The University of Texas at Austin (UT Austin) operated under a Student Policy on Race Relations when handling hate and bias incidents. In February 2017, an anti-Muslim flyer was posted near campus, prompting UT administration to hold a town hall for UT student activ-ists to vocalize their concerns. Through Kezarâs (2010) description of modern student protests and Barnhardtâs (2014) framework for modern student protests, this study analyzes the marginal-ized UT Austin student voices of that town hall meeting, demonstrating how modern student activism influenced presidential rhetoric and a new Hate and Bias Incidents Policy, the first in nearly two decades at UT Austin.Educatio
Proportional-integral-plus control applications of state-dependent parameter models
This paper considers proportional-integral-plus (PIP) control of non-linear systems defined by state-dependent parameter models, with particular emphasis on three practical demonstrators: a microclimate test chamber, a 1/5th-scale laboratory representation of an intelligent excavator, and a full-scale (commercial) vibrolance system used for ground improvement on a construction site. In each case, the system is represented using a quasi-linear state-dependent parameter (SDP) model structure, in which the parameters are functionally dependent on other variables in the system. The approach yields novel SDP-PIP control algorithms with improved performance and robustness in comparison with conventional linear PIP control. In particular, the new approach better handles the large disturbances and other non-linearities typical in the application areas considered
On Maximum Margin Hierarchical Classification
We present work in progress towards maximum margin hierarchical classification where the objects are allowed to belong to more than one category at a time. The classification hierarchy is represented as a Markov network equipped with an exponential family defined on the edges. We present a variation of the maximum margin multilabel learning framework, suited to the hierarchical classification task and allows efficient implementation via gradient-based methods. We compare the behaviour of the proposed method to the recently introduced hierarchical regularized least squares classifier as well as two SVM variants in Reuter's news article classification
An Alternative Approach to the Calculation and Analysis of Connectivity in the World City Network
Empirical research on world cities often draws on Taylor's (2001) notion of
an 'interlocking network model', in which office networks of globalized service
firms are assumed to shape the spatialities of urban networks. In spite of its
many merits, this approach is limited because the resultant adjacency matrices
are not really fit for network-analytic calculations. We therefore propose a
fresh analytical approach using a primary linkage algorithm that produces a
one-mode directed graph based on Taylor's two-mode city/firm network data. The
procedure has the advantage of creating less dense networks when compared to
the interlocking network model, while nonetheless retaining the network
structure apparent in the initial dataset. We randomize the empirical network
with a bootstrapping simulation approach, and compare the simulated parameters
of this null-model with our empirical network parameter (i.e. betweenness
centrality). We find that our approach produces results that are comparable to
those of the standard interlocking network model. However, because our approach
is based on an actual graph representation and network analysis, we are able to
assess cities' position in the network at large. For instance, we find that
cities such as Tokyo, Sydney, Melbourne, Almaty and Karachi hold more strategic
and valuable positions than suggested in the interlocking networks as they play
a bridging role in connecting cities across regions. In general, we argue that
our graph representation allows for further and deeper analysis of the original
data, further extending world city network research into a theory-based
empirical research approach.Comment: 18 pages, 9 figures, 2 table
From Small-Scale Dynamo to Isotropic MHD Turbulence
We consider the problem of incompressible, forced, nonhelical, homogeneous,
isotropic MHD turbulence with no mean magnetic field. This problem is
essentially different from the case with externally imposed uniform mean field.
There is no scale-by-scale equipartition between magnetic and kinetic energies
as would be the case for the Alfven-wave turbulence. The isotropic MHD
turbulence is the end state of the turbulent dynamo which generates folded
fields with small-scale direction reversals. We propose that the statistics
seen in numerical simulations of isotropic MHD turbulence could be explained as
a superposition of these folded fields and Alfven-like waves that propagate
along the folds.Comment: kluwer latex, 7 pages, 7 figures; Proceedings of the International
Workshop "Magnetic Fields and Star Formation: Theory vs. Observations",
Madrid, 21-25 April 2003 -- published version (but the e-print is free of
numerous typos introduced by the publisher
- âŠ