1,342 research outputs found
Recommended from our members
Acid and inflammatory sensitisation of naked mole-rat colonic afferent nerves.
Acid sensing in the gastrointestinal tract is required for gut homeostasis and the detection of tissue acidosis caused by ischaemia, inflammation and infection. In the colorectum, activation of colonic afferents by low pH contributes to visceral hypersensitivity and abdominal pain in human disease including during inflammatory bowel disease. The naked mole-rat (Heterocephalus glaber) shows no pain-related behaviour to subcutaneous acid injection and cutaneous afferents are insensitive to acid, an adaptation thought to be a consequence of the subterranean, likely hypercapnic, environment in which it lives. As such we sought to investigate naked mole-rat interoception within the gastrointestinal tract and how this differed from the mouse (Mus Musculus). Here, we show the presence of calcitonin gene-related peptide expressing extrinsic nerve fibres innervating both mesenteric blood vessels and the myenteric plexi of the smooth muscle layers of the naked mole-rat colorectum. Using ex vivo colonic-nerve electrophysiological recordings, we show differential sensitivity of naked mole-rat, compared to mouse, colonic afferents to acid and the prototypic inflammatory mediator bradykinin, but not direct mechanical stimuli. In naked mole-rat, but not mouse, we observed mechanical hypersensitivity to acid, whilst both species sensitised to bradykinin. Collectively, these findings suggest that naked mole-rat colonic afferents are capable of detecting acidic stimuli; however, their intracellular coupling to downstream molecular effectors of neuronal excitability and mechanotransduction likely differs between species.The authors declare no competing financial interests. This work was supported by Rosetrees Postdoctoral Grant (A1296; JRFH and EStJS), BBSRC grant (BB/R006210/1; JRFH and EStJS), Versus Arthritis Pain Challenge Grant (RG21973; GC and EStJS), AstraZeneca PhD studentshipt (KHB), EMBO Long-Term Fellowship (ALTF1565-2015; ZH) and University of Cambridge Vice Chancellor’s Award (TST)
Single-cell RNAseq reveals seven classes of colonic sensory neuron.
OBJECTIVE: Integration of nutritional, microbial and inflammatory events along the gut-brain axis can alter bowel physiology and organism behaviour. Colonic sensory neurons activate reflex pathways and give rise to conscious sensation, but the diversity and division of function within these neurons is poorly understood. The identification of signalling pathways contributing to visceral sensation is constrained by a paucity of molecular markers. Here we address this by comprehensive transcriptomic profiling and unsupervised clustering of individual mouse colonic sensory neurons. DESIGN: Unbiased single-cell RNA-sequencing was performed on retrogradely traced mouse colonic sensory neurons isolated from both thoracolumbar (TL) and lumbosacral (LS) dorsal root ganglia associated with lumbar splanchnic and pelvic spinal pathways, respectively. Identified neuronal subtypes were validated by single-cell qRT-PCR, immunohistochemistry (IHC) and Ca2+-imaging. RESULTS: Transcriptomic profiling and unsupervised clustering of 314 colonic sensory neurons revealed seven neuronal subtypes. Of these, five neuronal subtypes accounted for 99% of TL neurons, with LS neurons almost exclusively populating the remaining two subtypes. We identify and classify neurons based on novel subtype-specific marker genes using single-cell qRT-PCR and IHC to validate subtypes derived from RNA-sequencing. Lastly, functional Ca2+-imaging was conducted on colonic sensory neurons to demonstrate subtype-selective differential agonist activation. CONCLUSIONS: We identify seven subtypes of colonic sensory neurons using unbiased single-cell RNA-sequencing and confirm translation of patterning to protein expression, describing sensory diversity encompassing all modalities of colonic neuronal sensitivity. These results provide a pathway to molecular interrogation of colonic sensory innervation in health and disease, together with identifying novel targets for drug development
Epilepsy in Onchocerciasis Endemic Areas: Systematic Review and Meta-analysis of Population-Based Surveys
Epilepsy is particularly common in tropical areas. One main reason is that many endemic infections have neurological consequences. In addition, the medical, social and demographic burden of epilepsy remains substantial in these countries where it is often seen as a contagious condition and where the aetiology is often undetermined. For several decades, field researchers had reported some overlapping between the geographical distributions of epilepsy and onchocerciasis, a parasitic disease caused by the filarial worm Onchocerca volvulus which afflicts some 40 million persons worldwide. Here, we conducted a statistical analysis of all the data available on the relationship between the two conditions to determine whether the proportion of people suffering from epilepsy in a community could be related to the frequency of onchocerciasis. The combined results of the eight studies carried out in west, central and east Africa indicate a close epidemiological association between the two diseases. Should a causative relationship be demonstrated, onchocerciasis, which is known as “river blindness” because of its most serious sequela and the distribution of its vectors, could thus also be called “river epilepsy”. More research is needed to determine the mechanisms explaining this association and to assess the burden of onchocerciasis-associated epilepsy
Children’s understanding of well-being related questions: results of cognitive interviews in four European countries
This paper presents the results of cognitive interviews with 8-year-old children from four European countries–Croatia, France, Finland, and Ireland. The aim of the interviews was to pre-test a selection of well-being-related questions as a part of questionnaire development for the first European multinational birth cohort study–Growing up in Digital Europe (GUIDE)/EuroCohort. Unlike most previous studies, we focused on a younger and more age-homogenous sample, as well as a more diverse set of well-known questionnaires. A total of 68 children participated in the study. The main suggestion for the interviewing procedure is to create a safe environment yet minimize the parents’ interference in answering. The questionnaires should use child-friendly vocabulary, tangible examples, avoid complex sentence structure and negative statements. The use of timeframes in questions should be minimal. The children can use Likert-type scales, but the number of different scales in the questionnaire should be limited
Novel Arenavirus Sequences in Hylomyscus sp. and Mus (Nannomys) setulosus from Côte d'Ivoire: Implications for Evolution of Arenaviruses in Africa
This study aimed to identify new arenaviruses and gather insights in the evolution of arenaviruses in Africa. During 2003 through 2005, 1,228 small mammals representing 14 different genera were trapped in 9 villages in south, east, and middle west of Côte d'Ivoire. Specimens were screened by pan-Old World arenavirus RT-PCRs targeting S and L RNA segments as well as immunofluorescence assay. Sequences of two novel tentative species of the family Arenaviridae, Menekre and Gbagroube virus, were detected in Hylomyscus sp. and Mus (Nannomys) setulosus, respectively. Arenavirus infection of Mus (Nannomys) setulosus was also demonstrated by serological testing. Lassa virus was not found, although 60% of the captured animals were Mastomys natalensis. Complete S RNA and partial L RNA sequences of the novel viruses were recovered from the rodent specimens and subjected to phylogenetic analysis. Gbagroube virus is a closely related sister taxon of Lassa virus, while Menekre virus clusters with the Ippy/Mobala/Mopeia virus complex. Reconstruction of possible virus–host co-phylogeny scenarios suggests that, within the African continent, signatures of co-evolution might have been obliterated by multiple host-switching events
The Healthy Steps Study: A randomized controlled trial of a pedometer-based Green Prescription for older adults. Trial protocol
Background: Graded health benefits of physical activity have been demonstrated for the reduction of coronary heart disease, some cancers, and type-2 diabetes, and for injury reduction and improvements in mental health. Older adults are particularly at risk of physical inactivity, and would greatly benefit from successful targeted physical activity interventions. Methods/Design: The Healthy Steps study is a 12-month randomized controlled trial comparing the efficacy of a pedometer-based Green Prescription with the conventional time-based Green Prescription in increasing and maintaining physical activity levels in low-active adults over 65 years of age. The Green Prescription interventions involve a primary care physical activity prescription with 3 follow-up telephone counselling sessions delivered by trained physical activity counsellors over 3 months. Those in the pedometer group received a pedometer and counselling based around increasing steps that can be monitored on the pedometer, while those in the standard Green Prescription group received counselling using time-based goals. Baseline, 3 month (end of intervention), and 12 month measures were assessed in face-to-face home visits with outcomes measures being physical activity (Auckland Heart Study Physical Activity Questionnaire), quality of life (SF-36 and EQ-5D), depressive symptoms (Geriatric Depression Scale), blood pressure, weight status, functional status (gait speed, chair stands, and tandem balance test) and falls and adverse events (self-report). Utilisation of health services was assessed for the economic evaluation carried out alongside this trial. As well, a process evaluation of the interventions and an examination of barriers and motives for physical activity in the sample were conducted. The perceptions of primary care physicians in relation to delivering physical activity counselling were also assessed. Discussion: The findings from the Healthy Steps trial are due in late 2009. If successful in improving physical activity in older adults, the pedometer-based Green Prescription could assist in reducing utilisation of health services and improve cardiovascular health and reduction of risk for a range of non-communicable lifestyles diseases
A randomised controlled feasibility study of interpersonal art psychotherapy for the treatment of aggression in people with intellectual disabilities in secure care
Background: Rates of aggression in inpatient secure care are higher than in other psychiatric inpatient settings. People with intellectual disabilities in secure care require adapted psychological treatments. Interpersonal art psychotherapy incorporates the use of creative art making approaches by participants, thus reducing sole reliance upon verbal interactions during psychotherapy for people who may have communication difficulties. During interpersonal art psychotherapy, participants are individually supported by their therapist to consider how they conduct relationships. This includes the influence and impact of interpersonal issues resulting in repeated patterns of conflict. The key feasibility objectives were to assess recruitment and retention rates, follow-up rates and trial procedures such as randomisation, allocation and identifying any practical or ethical problems. In addition, a preliminary ‘signal’ for the intervention was considered and an indicative sample size calculation completed. The acceptability of a potential third trial arm attentional control condition, mindful colouring-in, was assessed using four single-case design studies and a UK trial capacity survey was conducted. Methods: Adult patients with intellectual disabilities in secure care were recruited and randomised to either interpersonal art psychotherapy or delayed treatment in this multi-site study. Outcomes were assessed using weekly observations via the Modified Overt Aggression Scale and a range of self-report measures. Within study reporting processes, qualitative interviews and a survey were completed to inform trial feasibility. Results: Recruitment procedures were successful. The target of recruiting 20 participants to the trial from multiple sites was achieved within 8 months of the study opening. All participants recruited to the treatment arm completed interpersonal art psychotherapy. Between-group differences of interpersonal art psychotherapy versus the delayed treatment control showed a ‘signal’ effect-size of.65 for total scores and.93 in the verbal aggression sub-scale. There were no amendments to the published protocol. The assessment of key feasibility objectives were met and the trial procedures were acceptable to all involved in the research. Conclusion: This study suggested that a randomised controlled trial of interpersonal art psychotherapy is acceptable and feasible. Trial registration: ISRCTN14326119 (Retrospectively Registered)
Selective C-Rel Activation via Malt1 Controls Anti-Fungal TH-17 Immunity by Dectin-1 and Dectin-2
C-type lectins dectin-1 and dectin-2 on dendritic cells elicit protective immunity against fungal infections through induction of TH1 and TH-17 cellular responses. Fungal recognition by dectin-1 on human dendritic cells engages the CARD9-Bcl10-Malt1 module to activate NF-κB. Here we demonstrate that Malt1 recruitment is pivotal to TH-17 immunity by selective activation of NF-κB subunit c-Rel, which induces expression of TH-17-polarizing cytokines IL-1β and IL-23p19. Malt1 inhibition abrogates c-Rel activation and TH-17 immunity to Candida species. We found that Malt1-mediated activation of c-Rel is similarly essential to induction of TH-17-polarizing cytokines by dectin-2. Whereas dectin-1 activates all NF-κB subunits, dectin-2 selectively activates c-Rel, signifying a specialized TH-17-enhancing function for dectin-2 in anti-fungal immunity by human dendritic cells. Thus, dectin-1 and dectin-2 control adaptive TH-17 immunity to fungi via Malt1-dependent activation of c-Rel
The IFN-γ-Inducible GTPase, Irga6, Protects Mice against Toxoplasma gondii but Not against Plasmodium berghei and Some Other Intracellular Pathogens
Clearance of infection with intracellular pathogens in mice involves interferon-regulated GTPases of the IRG protein family. Experiments with mice genetically deficient in members of this family such as Irgm1(LRG-47), Irgm3(IGTP), and Irgd(IRG-47) has revealed a critical role in microbial clearance, especially for Toxoplasma gondii. The in vivo role of another member of this family, Irga6 (IIGP, IIGP1) has been studied in less detail. We investigated the susceptibility of two independently generated mouse strains deficient in Irga6 to in vivo infection with T. gondii, Mycobacterium tuberculosis, Leishmania mexicana, L. major, Listeria monocytogenes, Anaplasma phagocytophilum and Plasmodium berghei. Compared with wild-type mice, mice deficient in Irga6 showed increased susceptibility to oral and intraperitoneal infection with T. gondii but not to infection with the other organisms. Surprisingly, infection of Irga6-deficient mice with the related apicomplexan parasite, P. berghei, did not result in increased replication in the liver stage and no Irga6 (or any other IRG protein) was detected at the parasitophorous vacuole membrane in IFN-γ-induced wild-type cells infected with P. berghei in vitro. Susceptibility to infection with T. gondii was associated with increased mortality and reduced time to death, increased numbers of inflammatory foci in the brains and elevated parasite loads in brains of infected Irga6-deficient mice. In vitro, Irga6-deficient macrophages and fibroblasts stimulated with IFN-γ were defective in controlling parasite replication. Taken together, our results implicate Irga6 in the control of infection with T. gondii and further highlight the importance of the IRG system for resistance to this pathogen
- …