17 research outputs found
Global burden and strength of evidence for 88 risk factors in 204 countries and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021
Background: Understanding the health consequences associated with exposure to risk factors is necessary to inform public health policy and practice. To systematically quantify the contributions of risk factor exposures to specific health outcomes, the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 aims to provide comprehensive estimates of exposure levels, relative health risks, and attributable burden of disease for 88 risk factors in 204 countries and territories and 811 subnational locations, from 1990 to 2021. Methods: The GBD 2021 risk factor analysis used data from 54 561 total distinct sources to produce epidemiological estimates for 88 risk factors and their associated health outcomes for a total of 631 risk–outcome pairs. Pairs were included on the basis of data-driven determination of a risk–outcome association. Age-sex-location-year-specific estimates were generated at global, regional, and national levels. Our approach followed the comparative risk assessment framework predicated on a causal web of hierarchically organised, potentially combinative, modifiable risks. Relative risks (RRs) of a given outcome occurring as a function of risk factor exposure were estimated separately for each risk–outcome pair, and summary exposure values (SEVs), representing risk-weighted exposure prevalence, and theoretical minimum risk exposure levels (TMRELs) were estimated for each risk factor. These estimates were used to calculate the population attributable fraction (PAF; ie, the proportional change in health risk that would occur if exposure to a risk factor were reduced to the TMREL). The product of PAFs and disease burden associated with a given outcome, measured in disability-adjusted life-years (DALYs), yielded measures of attributable burden (ie, the proportion of total disease burden attributable to a particular risk factor or combination of risk factors). Adjustments for mediation were applied to account for relationships involving risk factors that act indirectly on outcomes via intermediate risks. Attributable burden estimates were stratified by Socio-demographic Index (SDI) quintile and presented as counts, age-standardised rates, and rankings. To complement estimates of RR and attributable burden, newly developed burden of proof risk function (BPRF) methods were applied to yield supplementary, conservative interpretations of risk–outcome associations based on the consistency of underlying evidence, accounting for unexplained heterogeneity between input data from different studies. Estimates reported represent the mean value across 500 draws from the estimate's distribution, with 95% uncertainty intervals (UIs) calculated as the 2·5th and 97·5th percentile values across the draws. Findings: Among the specific risk factors analysed for this study, particulate matter air pollution was the leading contributor to the global disease burden in 2021, contributing 8·0% (95% UI 6·7–9·4) of total DALYs, followed by high systolic blood pressure (SBP; 7·8% [6·4–9·2]), smoking (5·7% [4·7–6·8]), low birthweight and short gestation (5·6% [4·8–6·3]), and high fasting plasma glucose (FPG; 5·4% [4·8–6·0]). For younger demographics (ie, those aged 0–4 years and 5–14 years), risks such as low birthweight and short gestation and unsafe water, sanitation, and handwashing (WaSH) were among the leading risk factors, while for older age groups, metabolic risks such as high SBP, high body-mass index (BMI), high FPG, and high LDL cholesterol had a greater impact. From 2000 to 2021, there was an observable shift in global health challenges, marked by a decline in the number of all-age DALYs broadly attributable to behavioural risks (decrease of 20·7% [13·9–27·7]) and environmental and occupational risks (decrease of 22·0% [15·5–28·8]), coupled with a 49·4% (42·3–56·9) increase in DALYs attributable to metabolic risks, all reflecting ageing populations and changing lifestyles on a global scale. Age-standardised global DALY rates attributable to high BMI and high FPG rose considerably (15·7% [9·9–21·7] for high BMI and 7·9% [3·3–12·9] for high FPG) over this period, with exposure to these risks increasing annually at rates of 1·8% (1·6–1·9) for high BMI and 1·3% (1·1–1·5) for high FPG. By contrast, the global risk-attributable burden and exposure to many other risk factors declined, notably for risks such as child growth failure and unsafe water source, with age-standardised attributable DALYs decreasing by 71·5% (64·4–78·8) for child growth failure and 66·3% (60·2–72·0) for unsafe water source. We separated risk factors into three groups according to trajectory over time: those with a decreasing attributable burden, due largely to declining risk exposure (eg, diet high in trans-fat and household air pollution) but also to proportionally smaller child and youth populations (eg, child and maternal malnutrition); those for which the burden increased moderately in spite of declining risk exposure, due largely to population ageing (eg, smoking); and those for which the burden increased considerably due to both increasing risk exposure and population ageing (eg, ambient particulate matter air pollution, high BMI, high FPG, and high SBP). Interpretation: Substantial progress has been made in reducing the global disease burden attributable to a range of risk factors, particularly those related to maternal and child health, WaSH, and household air pollution. Maintaining efforts to minimise the impact of these risk factors, especially in low SDI locations, is necessary to sustain progress. Successes in moderating the smoking-related burden by reducing risk exposure highlight the need to advance policies that reduce exposure to other leading risk factors such as ambient particulate matter air pollution and high SBP. Troubling increases in high FPG, high BMI, and other risk factors related to obesity and metabolic syndrome indicate an urgent need to identify and implement interventions
Patient journey for hypertension and dyslipidemia in Saudi Arabia: highlighting the evidence gaps
Abstract Background In recent years, Saudi Arabia has witnessed staggering rates of hypertension and dyslipidemia-related cardiovascular (CV) deaths, overburdening the healthcare ecosystem of the country. Appropriate public health interventions can be devised through quantitative mapping of evidence. Identification of potential data gaps can prioritize future research needs and develop a ‘best-fit’ framework for patient-centric management of hypertension and dyslipidemia. Methods This review quantified data gaps in the prevalence and key epidemiological touchpoints of the patient journey including awareness, screening, diagnosis, treatment, adherence, and control in patients with hypertension and dyslipidemia in Saudi Arabia. Studies published in English between January 2010 and December 2021 were identified through a structured search on MEDLINE, Embase, BIOSIS, and PubMed databases. An unstructured search on public and government websites, including Saudi Ministry of Health, without date limits was carried out to fill data gaps. After exclusion of studies based on predefined criteria, a total of 14 studies on hypertension and 12 studies and one anecdotal evidence for dyslipidemia were included in the final analyses. Results The prevalence of hypertension was reported to be 14.0%–41.8% while that for dyslipidemia was 12.5%–62.0%. The screening rate for hypertension was 100.0% as revealed by the nationwide surveys. Among hypertensive patients, only 27.6%–61.1% patients were aware of their condition, 42.2% patients underwent diagnosis, 27.9%–78.9% patients received antihypertensive treatment, 22.5% patients adhered to treatment medication, while blood pressure (BP) control was achieved in 27.0%–45.0% patients. Likewise, among patients with dyslipidemia, 10.5%–47.3% patients were aware of their condition, 34.6% patients were screened, and 17.8% underwent diagnosis. Although high treatment rates ranging from 40.0%–94.0% were reported, medication adherence recorded was 45.0%–77.4% among the treated patients. The overall low control rates ranged from 28.0%–41.5%. Conclusions The study findings highlight evidence gaps along key touchpoints of patient journey. Reinforcing the efforts for high-quality evidence-based research at a national level may pave a path for better resource utilization and provide guidance to practice and amend health policies for patients, healthcare practitioners (HCPs), and healthcare policy makers for better patient outcomes in Saudi Arabia
MUNC18-1 regulates the submembrane F-actin network, independently of syntaxin1 targeting, via hydrophobicity in beta-sheet 10
MUNC18-1 (also known as STXBP1) is an essential protein for docking and fusion of secretory vesicles. Mouse chromaffin cells (MCCs) lacking MUNC18-1 show impaired secretory vesicle docking, but also mistargeting of SNARE protein syntaxin1 and an abnormally dense submembrane F-actin network. Here, we tested the contribution of both these phenomena to docking and secretion defects in MUNC18-1-deficient MCCs. We show that an abnormal F-actin network and syntaxin1 targeting defects are not observed in Snap25- or Syt1-knockout (KO) MCCs, which are also secretion deficient. We identified a MUNC18-1 mutant (V263T in β-sheet 10) that fully restores syntaxin1 targeting but not F-actin abnormalities in Munc18-1-KO cells. MUNC18-2 and -3 (also known as STXBP2 and STXBP3, respectively), which lack the hydrophobic residue at position 263, also did not restore a normal F-actin network in Munc18-1-KO cells. However, these proteins did restore the normal F-actin network when a hydrophobic residue was introduced at the corresponding position. Munc18-1-KO MCCs expressing MUNC18-1(V263T) showed normal vesicle docking and exocytosis. These results demonstrate that MUNC18-1 regulates the F-actin network independently of syntaxin1 targeting via hydrophobicity in β-sheet 10. The abnormally dense F-actin network in Munc18-1-deficient cells is not a rate-limiting barrier in secretory vesicle docking or fusion.This article has an associated First Person interview with the first author of the paper