27 research outputs found
Histology-directed and imaging mass spectrometry: An emerging technology in ectopic calcification
The present study was designed to demonstrate the potential of an optimized histology directed protein identification combined with imaging mass spectrometry technology to reveal and identify molecules associated to ectopic calcification in human tissue. As a proof of concept, mineralized and non-mineralized areas were compared within the same dermal tissue obtained from a patient affected by Pseudoxanthoma elasticum, a genetic disorder characterized by calcification only at specific sites of soft connective tissues. Data have been technically validated on a contralateral dermal tissue from the same subject and compared with those from control healthy skin. Results demonstrate that this approach 1) significantly reduces the effects generated by techniques that, disrupting tissue organization, blend data from affected and unaffected areas; 2) demonstrates that, abolishing differences due to inter-individual variability, mineralized and non-mineralized areas within the same sample have a specific protein profile and have a different distribution of molecules; and 3) avoiding the bias of focusing on already known molecules, reveals a number of proteins that have been never related to the disease nor to the calcification process, thus paving the way for the selection of new molecules to be validated as pathogenic or as potential pharmacological targets
The IXPE View of GRB 221009A
We present the IXPE observation of GRB 221009A, which includes upper limits on the linear polarization degree of both prompt and afterglow emission in the soft X-ray energy band. GRB 221009A is an exceptionally bright gamma-ray burst (GRB) that reached Earth on 2022 October 9 after traveling through the dust of the Milky Way. The Imaging X-ray Polarimetry Explorer (IXPE) pointed at GRB 221009A on October 11 to observe, for the first time, the 2–8 keV X-ray polarization of a GRB afterglow. We set an upper limit to the polarization degree of the afterglow emission of 13.8% at a 99% confidence level. This result provides constraints on the jet opening angle and the viewing angle of the GRB, or alternatively, other properties of the emission region. Additionally, IXPE captured halo-rings of dust-scattered photons that are echoes of the GRB prompt emission. The 99% confidence level upper limit to the prompt polarization degree depends on the background model assumption, and it ranges between ∼55% and ∼82%. This single IXPE pointing provides both the first assessment of X-ray polarization of a GRB afterglow and the first GRB study with polarization observations of both the prompt and afterglow phases
Novel Common Genetic Susceptibility Loci for Colorectal Cancer
BACKGROUND: Previous genome-wide association studies (GWAS) have identified 42 loci (P < 5 × 10-8) associated with risk of colorectal cancer (CRC). Expanded consortium efforts facilitating the discovery of additional susceptibility loci may capture unexplained familial risk. METHODS: We conducted a GWAS in European descent CRC cases and control subjects using a discovery-replication design, followed by examination of novel findings in a multiethnic sample (cumulative n = 163 315). In the discovery stage (36 948 case subjects/30 864 control subjects), we identified genetic variants with a minor allele frequency of 1% or greater associated with risk of CRC using logistic regression followed by a fixed-effects inverse variance weighted meta-analysis. All novel independent variants reaching genome-wide statistical significance (two-sided P < 5 × 10-8) were tested for replication in separate European ancestry samples (12 952 case subjects/48 383 control subjects). Next, we examined the generalizability of discovered variants in East Asians, African Americans, and Hispanics (12 085 case subjects/22 083 control subjects). Finally, we examined the contributions of novel risk variants to familial relative risk and examined the prediction capabilities of a polygenic risk score. All statistical tests were two-sided. RESULTS: The discovery GWAS identified 11 variants associated with CRC at P < 5 × 10-8, of which nine (at 4q22.2/5p15.33/5p13.1/6p21.31/6p12.1/10q11.23/12q24.21/16q24.1/20q13.13) independently replicated at a P value of less than .05. Multiethnic follow-up supported the generalizability of discovery findings. These results demonstrated a 14.7% increase in familial relative risk explained by common risk alleles from 10.3% (95% confidence interval [CI] = 7.9% to 13.7%; known variants) to 11.9% (95% CI = 9.2% to 15.5%; known and novel variants). A polygenic risk score identified 4.3% of the population at an odds ratio for developing CRC of at least 2.0. CONCLUSIONS: This study provides insight into the architecture of common genetic variation contributing to CRC etiology and improves risk prediction for individualized screenin
Mass spectrometric methodologies and life science
Dottorato di Ricerca in Methodologies for the Development of molecules of pharmacological interest, XXIII Ciclo,2009-2010Università della Calabri
Histology-Directed Microwave Assisted Enzymatic Protein Digestion for MALDI MS Analysis of Mammalian Tissue
This study presents on-tissue proteolytic
digestion using a microwave
irradiation and peptide extraction method for <i>in situ</i> analysis of proteins from spatially defined regions of a tissue
section. The methodology utilizes hydrogel discs (1 mm diameter) embedded
with trypsin solution. The enzyme-laced hydrogel discs are applied
to a tissue section, directing enzymatic digestion to a spatially
confined area of the tissue. By applying microwave radiation, protein
digestion is performed in 2 min on-tissue, and the extracted peptides
are then analyzed by matrix assisted laser desorption/ionization mass
spectrometry (MALDI MS) and liquid chromatography tandem mass spectrometry
(LC-MS/MS). The reliability and reproducibility of the microwave assisted
hydrogel mediated on-tissue digestion is demonstrated by the comparison
with other on-tissue digestion strategies, including comparisons with
conventional heating and in-solution digestion. LC-MS/MS data were
evaluated considering the number of identified proteins as well as
the number of protein groups and distinct peptides. The results of
this study demonstrate that rapid and reliable protein digestion can
be performed on a single thin tissue section while preserving the
relationship between the molecular information obtained and the tissue
architecture, and the resulting peptides can be extracted in sufficient
abundance to permit analysis using LC-MS/MS. This approach will be
most useful for samples that have limited availability but are needed
for multiple analyses, especially for the correlation of proteomics
data with histology and immunohistochemistry
Claw foot A case report
A cutaneous horn could be defined as a conical projection on the surface of skin made of cornified material and resembling an animal horn. These lesions most commonly affect light-skinned men aged between 50 to 89 years and usually appear in sun exposed areas. Radiation, chronic irritation and even human papilloma virus-2 infection may be precipitating factors. More than half of the cases originate from either malignant or premalignant lesions, therefore the base of the lesion must be carefully examined histologically. Long standing presence of the lesion, conspicuous protrusion of the horn and pain are positive predictive factors for malignancy and invasivity. In these cases an invasive surgical approach is needed
Imaging Mass Spectrometry for Assessing Cutaneous Wound Healing: Analysis of Pressure Ulcers
Imaging
mass spectrometry (IMS) was employed for the analysis of
frozen skin biopsies to investigate the differences between stage
IV pressure ulcers that remain stalled, stagnant, and unhealed versus
those exhibiting clinical and histological signs of improvement. Our
data reveal a rich diversity of proteins that are dynamically modulated,
and we selectively highlight a family of calcium binding proteins
(S-100 molecules) including calcyclin (S100-A6), calgranulins A (S100-A8)
and B (S100-A9), and calgizzarin (S100-A11). IMS allowed us to target
three discrete regions of interest: the wound bed, adjacent dermis,
and hypertrophic epidermis. Plots derived using unsupervised principal
component analysis of the global protein signatures within these three
spatial niches indicate that these data from wound signatures have
potential as a prognostic tool since they appear to delineate wounds
that are favorably responding to therapeutic interventions versus
those that remain stagnant or intractable in their healing status.
Our discovery-based approach with IMS augments current knowledge of
the molecular signatures within pressure ulcers while providing a
rationale for a focused examination of the role of calcium modulators
within the context of impaired wound healing
Aromatherapy: composition of the gaseous phase at equilibrium with liquid bergamot essential oil
Abstract This work compares the composition at different temperatures of gaseous phase of bergamot essential oil at equilibrium with the liquid phase. A new GC–MS methodology to determine quantitatively the volatile aroma compounds was developed. The adopted methodology involved the direct injection of headspace gas into injection port of GC–MS system and of known amounts of the corresponding authentic volatile compounds. The methodology was validated. This study showed that gaseous phase composition is different from that of the liquid phase at equilibrium with it
Authenticity of PGI “Clementine of Calabria” by Multielement Fingerprint
Clementine is a citrus fruit that has found a peculiar
habitat
in specific areas of Calabria, a region located in southern Italy.
Due to its peculiar characteristics it was recently awarded with protected
geographical indications (PGI) from the European Union. In this work,
stepwise linear discriminant analysis (S-LDA), soft independent modeling
of class analogy (SIMCA), and partial least-squares discriminant analysis
(PLS-DA) were used to build chemometric models able to protect PGI
Clementine from others of different origin. Accordingly, the concentration
of 24–26 elements was determined in peel and juice samples,
respectively, obtained from Calabrian PGI clementine and from fruits
cultivated in Algeria, Tunisia, and Spain. A cross-validation procedure
has shown very satisfactory values of prediction ability for both
S-LDA (96.6% for juice samples and 100% for peel samples) and SIMCA
(100% for both peel and juice samples). PLS-DA models also yielded
satisfactory results