1,781 research outputs found

    Universal patterns in sound amplitudes of songs and music genres

    Full text link
    We report a statistical analysis over more than eight thousand songs. Specifically, we investigate the probability distribution of the normalized sound amplitudes. Our findings seems to suggest a universal form of distribution which presents a good agreement with a one-parameter stretched Gaussian. We also argue that this parameter can give information on music complexity, and consequently it goes towards classifying songs as well as music genres. Additionally, we present statistical evidences that correlation aspects of the songs are directly related with the non-Gaussian nature of their sound amplitude distributions.Comment: Accepted for publication as a Brief Report in Physical Review

    Severe discrepancies between experiment and theory in the superconducting proximity effect

    Full text link
    The superconducting proximity effect is investigated for SN double layers in a regime where the resulting transition temperature T_{c} does not depend on the mean free paths of the films and, within limits, not on the transparency of the interface. This regime includes the thin film limit and the normalized initial slope S_{sn}= (d_{s}/T_{s})|dT_{c}/dd_{n}|. The experimental results for T_{c} are compared with a numerical simulation which was recently developed in our group. The results for the SN double layers can be devided into three groups: (i) When N = Cu, Ag, Au, Mg a disagreement between experiment and theory by a factor of the order of three is observed, (ii) When N = Cd, Zn, Al the disagreement between experiment and theory is reduced to a factor of about 1.5, (iii) When N = In, Sn a reasonably good agreement between experiment and theory is observed

    Gerstmann-Straussler-Scheinker disease in an Alsatian family: clinical and genetic studies

    Get PDF
    The clinical progression of Gerstmann-Straussler-Scheinker disease in a family of Alsatian origin is reported. The age of onset and the duration of evolution were variable. The clinical picture became more complex over the generations: in the first generations, isolated dementia and in later generations a triad of pyramidal, pseudobulbar syndromes and dementia associated with spinal cord and cerebellar features. Prion gene analysis showed that four surviving patients carry double missense changes at codons 117 and 129, identical to those found in one case at necropsy and 10 other healthy members of the family. The missense changes were not found in 100 controls. No member of the family had modification of condons 102, 178, or 200. The lod score suggests linkage between the missense change at codon 117 and Gerstmann- Straussler-Scheinker disease in this family

    Targetable Signaling Pathway Mutations Are Associated with Malignant Phenotype in IDH-Mutant Gliomas

    Get PDF
    Purpose: Isocitrate dehydrogenase (IDH) gene mutations occur in low-grade and high-grade gliomas. We sought to identify the genetic basis of malignant phenotype heterogeneity in IDH-mutant gliomas. Methods: We prospectively implanted tumor specimens from 20 consecutive IDH1-mutant glioma resections into mouse brains and genotyped all resection specimens using a CLIA-certified molecular panel. Gliomas with cancer driver mutations were tested for sensitivity to targeted inhibitors in vitro. Associations between genomic alterations and outcomes were analyzed in patients. Results: By 10 months, 8 of 20 IDH1-mutant gliomas developed intracerebral xenografts. All xenografts maintained mutant IDH1 and high levels of 2-hydroxyglutarate on serial transplantation. All xenograft-producing gliomas harbored “lineage-defining” mutations in CIC (oligodendroglioma) or TP53 (astrocytoma), and 6 of 8 additionally had activating mutations in PIK3CA or amplification of PDGFRA, MET, or N-MYC. Only IDH1 and CIC/TP53 mutations were detected in non–xenograft-forming gliomas (P = 0.0007). Targeted inhibition of the additional alterations decreased proliferation in vitro. Moreover, we detected alterations in known cancer driver genes in 13.4% of IDH-mutant glioma patients, including PIK3CA, KRAS, AKT, or PTEN mutation or PDGFRA, MET, or N-MYC amplification. IDH/CIC mutant tumors were associated with PIK3CA/KRAS mutations whereas IDH/TP53 tumors correlated with PDGFRA/MET amplification. Presence of driver alterations at progression was associated with shorter subsequent progression-free survival (median 9.0 vs. 36.1 months; P = 0.0011). Conclusion: A subset of IDH-mutant gliomas with mutations in driver oncogenes has a more malignant phenotype in patients. Identification of these alterations may provide an opportunity for use of targeted therapies in these patients.Koch Institute Dana Farber/Harvard Cancer Center Bridge Projec

    Epidermal growth factor receptor downregulation by small heterodimeric binding proteins

    Get PDF
    No single engineered protein has been shown previously to robustly downregulate epidermal growth factor receptor (EGFR), a validated cancer target. A panel of fibronectin-based domains was engineered to bind with picomolar to nanomolar affinity to multiple epitopes of EGFR. Monovalent and homo- and hetero-bivalent dimers of these domains were tested for EGFR downregulation. Selected orientations of non-competitive heterodimers decrease EGFR levels by up to 80% in multiple cell types, without activating receptor signaling. These heterodimers inhibit autophosphorylation, proliferation and migration, and are synergistic with the monoclonal antibody cetuximab in these activities. These small (25 kDa) heterodimers represent a novel modality for modulating surface receptor levels.National Institutes of Health (U.S.) (NIH grant CA96504)National Institutes of Health (U.S.) (NIH grant CA118705)National Science Foundation (U.S.) (Graduate Research Fellowship Program

    Quantitative assessment of the stent/scaffold strut embedment analysis by optical coherence tomography

    Get PDF
    The degree of stent/scaffold embedment could be a surrogate parameter of the vessel wall-stent/scaffold interaction and could have biological implications in the vascular response. We have developed a new specific software for the quantitative evaluation of embedment of struts by optical coherence tomography (OCT). In the present study, we described the algorithm of the embedment analysis and its reproducibility. The degree of embedment was evaluated as the ratio of the embedded part versus the whole strut height and subdivided into quartiles. The agreement and the inter- and intra-observer reproducibility were evaluated using the kappa and the interclass correlation coefficient (ICC). A total of 4 pullbacks of OCT images in 4 randomly selected coronary lesions with 3.0 × 18 mm devices [2 lesions with Absorb BVS and 2 lesions with XIENCE (both from Abbott Vascular, Santa Clara, CA, USA)] from Absorb Japan trial were evaluated by two investigators with QCU-CMS software version 4.69 (Leiden University Medical Center, Leiden, The Netherlands). Finally, 1481 polymeric struts in 174 cross-sections and 1415 metallic struts in 161 cross-sections were analyzed. Inter- and intra-observer reproducibility of quantitative measurements of embedment ratio and categorical asses

    Cerium Oxide Nanoparticles Protect Cardiac Progenitor Cells from Oxidative Stress

    Get PDF
    Cardiac progenitor cells (CPCs) are a promising autologous source of cells for cardiac regenerative medicine. However, CPC culture in vitro requires the presence of microenvironmental conditions (a complex array of bioactive substance concentration, mechanostructural factors, and physicochemical factors) closely mimicking the natural cell surrounding in vivo, including the capability to uphold reactive oxygen species (ROS) within physiological levels in vitro. Cerium oxide nanoparticles (nanoceria) are redox-active and could represent a potent tool to control the oxidative stress in isolated CPCs. Here, we report that 24 h exposure to 5, 10, and 50 !g/mL of nanoceria did not a!ect cell growth and function in cardiac progenitor cells, while being able to protect CPCs from H2O2-induced cytotoxicity for at least 7 days, indicating that nanoceria in an e!ective antioxidant. Therefore, these "ndings con"rm the great potential of nanoceria for controlling ROS-induced cell damage

    2D nanosheet molybdenum disulphide (MoS2) modified electrodes explored towards the hydrogen evolution reaction

    Get PDF
    We explore the use of two-dimensional (2D) MoS2 nanosheets as an electro-catalyst for the Hydrogen Evolution Reaction (HER). Using four commonly employed commercially available carbon based electrode support materials, namely edge plane pyrolytic graphite (EPPG), glassy carbon (GC), boron-doped diamond (BDD) and screen-printed graphite electrodes (SPE), we critically evaluate the reported electro-catalytic performance of unmodified and MoS2 modified electrodes towards the HER. Surprisingly, current literature focuses almost exclusively on the use of GC as an underling support electrode upon which HER materials are immobilised. 2D MoS2 nanosheet modified electrodes are found to exhibit a coverage dependant electrocatalytic effect towards the HER. Modification of the supporting electrode surface with an optimal mass of 2D MoS2 nanosheets results in a lowering of the HER onset potential by ca. 0.33, 0.57, 0.29 and 0.31 V at EPPG, GC, SPE and BDD electrodes compared to their unmodified counterparts respectively. The lowering of the HER onset potential is associated with each supporting electrodes individual electron transfer kinetics/properties. The effect of MoS2 coverage is also explored. We reveal that its ability to catalyse the HER is dependent on the mass deposited until a critical mass of 2D MoS2 nanosheets is achieved, after which its electrocatalytic benefits and/or surface stability curtail. The active surface site density and turn over frequency for the 2D MoS2 nanosheets is determined, characterised and found to be dependent on both the coverage of 2D MoS2 nanosheets and the underlying/supporting substrate. This work is essential for those designing, fabricating and consequently electrochemically testing 2D nanosheet materials for the HER
    corecore