37 research outputs found
<em>IDH</em>-Mutant Gliomas
Isocitrate dehydrogenase (IDH) mutation is one of the most critical genomic alterations in lower grade and secondary glioblastoma patient. More than 90% of IDH mutation is located at codon R132 of IDH1 gene. IDH mutation produces oncometabolite “2-hydroxyglutarate” and induces epigenetic alteration, such as DNA global methylation and histone methylation. As a result, IDH mutation promotes early gliomagenesis. Since IDH mutation is the earliest genomic event and almost always retained during tumor progression, IDH mutation is expected as novel therapeutic target. Herein, we review the clinical characteristics of IDH-mutant gliomas, biological role of IDH mutation for gliomagenesis, and current and future therapeutic approach for IDH mutant tumors
医療格差是正と医師働き方改革のための遠隔医療
For local government hospitals in sparsely populated areas, access to emergency and specialized medical care is essential for the wellbeing of local residents. However, Tokushima Prefectural Kaifu Hospital has grappled with numerous crises in the past, stemming from a chronic shortage of doctors. Due to the inherent challenges and constraints associated with traditional face-to-face medical treatment, where doctors directly provide medical care, it becomes challenging to ensure the sustainability of emergency and specialized medical care with limited staffing. To address this issue, we are opting for a paradigm shift in medical care driven by digital technology, often referred to as Digital Transformation(DX). At our hospital, we introduced a remote emergency medical treatment system for emergency medical care in 2013 and for remote outpatient treatment in 2018 as part of medical DX. The former is a system that transmits medical images taken at a hospital to a smartphone or tablet to support on-call doctors and foster collaboration between hospitals. Under remote outpatient treatment, specialists from remote medical institutions deliver medical care to patients visiting our hospital; this service has been harnessing 5G connectivity in recent years. By embracing medical DX, we not only ensured the quality of medical care but also reduced the mental and physical strain on doctors and patients. This enabled medical institutions in depopulated areas to provide sustainable emergency and specialized medical care. If implemented, these measures may contribute toward rectifying the medical disparities between urban and depopulated areas
The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force
「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection
DOCK2 is involved in the host genetics and biology of severe COVID-19
「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target
Combined Pre- and Retrosigmoid Approach for Petroclival Meningiomas with the Aid of a Rotatable Head Frame: Peri-Auricular Three-Quarter Twist-Rotation Approach: Technical Note
We used the combined subtemporal presigmoid and suboccipital retrosigmoid multidirectional approach with the aid of a rotatable head frame (periauricular three-quarter twist-rotation approach) in 20 cases of petroclival meningiomas. Patients were placed in the lateral decubitus (park-bench) position. The head is twisted, rotated, and positioned 30 degrees face down in the Sugita rotatable head frame. By rotating this head frame, a 30- to 60-degree face-down position can be obtained when the suboccipital retrosigmoid route is used. Alternatively, the straight lateral or slightly brow-up position is obtained when the subtemporal presigmoid route is used. This twist-rotation approach provides multiple trajectories through the petroclival region with minimal drilling of the petrous bone, fatigue of the surgeon, and retraction of the brain
Extranodal lymphoma: pathogenesis, diagnosis and treatment
Abstract Approximately 30% of lymphomas occur outside the lymph nodes, spleen, or bone marrow, and the incidence of extranodal lymphoma has been rising in the past decade. While traditional chemotherapy and radiation therapy can improve survival outcomes for certain patients, the prognosis for extranodal lymphoma patients remains unsatisfactory. Extranodal lymphomas in different anatomical sites often have distinct cellular origins, pathogenic mechanisms, and clinical manifestations, significantly influencing their diagnosis and treatment. Therefore, it is necessary to provide a comprehensive summary of the pathogenesis, diagnosis, and treatment progress of extranodal lymphoma overall and specifically for different anatomical sites. This review summarizes the current progress in the common key signaling pathways in the development of extranodal lymphomas and intervention therapy. Furthermore, it provides insights into the pathogenesis, diagnosis, and treatment strategies of common extranodal lymphomas, including gastric mucosa-associated lymphoid tissue (MALT) lymphoma, mycosis fungoides (MF), natural killer/T-cell lymphoma (nasal type, NKTCL-NT), and primary central nervous system lymphoma (PCNSL). Additionally, as PCNSL is one of the extranodal lymphomas with the worst prognosis, this review specifically summarizes prognostic indicators and discusses the challenges and opportunities related to its clinical applications. The aim of this review is to assist clinical physicians and researchers in understanding the current status of extranodal lymphomas, enabling them to make informed clinical decisions that contribute to improving patient prognosis