8 research outputs found

    SNPmasker: automatic masking of SNPs and repeats across eukaryotic genomes

    Get PDF
    SNPmasker is a comprehensive web interface for masking large eukaryotic genomes. The program is designed to mask SNPs from recent dbSNP database and to mask the repeats with two alternative programs. In addition to the SNP masking, we also offer population-specific substitution of SNP alleles in genomic sequence according to SNP frequencies in HapMap Phase II data. The input to SNPmasker can be defined in chromosomal coordinates or inserted as a sequence. The sequences masked by our web server are most useful as a preliminary step for different primer and probe design tasks. The service is available at and is free for all users

    Genetic variation in the Estonian population : pharmacogenomics study of adverse drug effects using electronic health records

    No full text
    Pharmacogenomics aims to tailor pharmacological treatment to each individual by considering associations between genetic polymorphisms and adverse drug effects (ADEs). With technological advances, pharmacogenomic research has evolved from candidate gene analyses to genome-wide association studies. Here, we integrate deep whole-genome sequencing (WGS) information with drug prescription and ADE data from Estonian electronic health record (EHR) databases to evaluate genome- and pharmacome-wide associations on an unprecedented scale. We leveraged WGS data of 2240 Estonian Biobank participants and imputed all single-nucleotide variants (SNVs) with allele counts over 2 for 13,986 genotyped participants. Overall, we identified 41 (10 novel) loss-of-function and 567 (134 novel) missense variants in 64 very important pharmacogenes. The majority of the detected variants were very rare with frequencies below 0.05%, and 6 of the novel lossof-function and 99 of the missense variants were only detected as single alleles (allele count = 1). We also validated documented pharmacogenetic associations and detected new independent variants in known gene-drug pairs. Specifically, we found that CTNNA3 was associated with myositis and myopathies among individuals taking nonsteroidal anti-inflammatory oxicams and replicated this finding in an extended cohort of 706 individuals. These findings illustrate that population-based WGS-coupled EHRs are a useful tool for biomarker discovery

    A recent bottleneck of Y chromosome diversity coincides with a global change in culture

    No full text
    International audienceIt is commonly thought that human genetic diversity in non-African populations was shaped primarily by an out-of-Africa dispersal 50-100 thousand yr ago (kya). Here, we present a study of 456 geographically diverse high-coverage Y chromosome sequences, including 299 newly reported samples. Applying ancient DNA calibration, we date the Y-chromosomal most recent common ancestor (MRCA) in Africa at 254 (95% CI 192-307) kya and detect a cluster of major non-African founder haplogroups in a narrow time interval at 47-52 kya, consistent with a rapid initial colonization model of Eurasia and Oceania after the out-of-Africa bottleneck. In contrast to demographic reconstructions based on mtDNA, we infer a second strong bottleneck in Y-chromosome lineages dating to the last 10 ky. We hypothesize that this bottleneck is caused by cultural changes affecting variance of reproductive success among males

    A recent bottleneck of Y chromosome diversity coincides with a global change in culture

    No full text
    International audienceIt is commonly thought that human genetic diversity in non-African populations was shaped primarily by an out-of-Africa dispersal 50-100 thousand yr ago (kya). Here, we present a study of 456 geographically diverse high-coverage Y chromosome sequences, including 299 newly reported samples. Applying ancient DNA calibration, we date the Y-chromosomal most recent common ancestor (MRCA) in Africa at 254 (95% CI 192-307) kya and detect a cluster of major non-African founder haplogroups in a narrow time interval at 47-52 kya, consistent with a rapid initial colonization model of Eurasia and Oceania after the out-of-Africa bottleneck. In contrast to demographic reconstructions based on mtDNA, we infer a second strong bottleneck in Y-chromosome lineages dating to the last 10 ky. We hypothesize that this bottleneck is caused by cultural changes affecting variance of reproductive success among males
    corecore