160 research outputs found

    Nature of vibrational eigenmodes in topologically disordered solids

    Full text link
    We use a local projectional analysis method to investigate the effect of topological disorder on the vibrational dynamics in a model glass simulated by molecular dynamics. Evidence is presented that the vibrational eigenmodes in the glass are generically related to the corresponding eigenmodes of its crystalline counterpart via disorder-induced level-repelling and hybridization effects. It is argued that the effect of topological disorder in the glass on the dynamical matrix can be simulated by introducing positional disorder in a crystalline counterpart.Comment: 7 pages, 6 figures, PRB, to be publishe

    The contact process in heterogeneous and weakly-disordered systems

    Full text link
    The critical behavior of the contact process (CP) in heterogeneous periodic and weakly-disordered environments is investigated using the supercritical series expansion and Monte Carlo (MC) simulations. Phase-separation lines and critical exponents β\beta (from series expansion) and η\eta (from MC simulations) are calculated. A general analytical expression for the locus of critical points is suggested for the weak-disorder limit and confirmed by the series expansion analysis and the MC simulations. Our results for the critical exponents show that the CP in heterogeneous environments remains in the directed percolation (DP) universality class, while for environments with quenched disorder, the data are compatible with the scenario of continuously changing critical exponents.Comment: 5 pages, 3 figure

    Universal Features of Terahertz Absorption in Disordered Materials

    Full text link
    Using an analytical theory, experimental terahertz time-domain spectroscopy data and numerical evidence, we demonstrate that the frequency dependence of the absorption coupling coefficient between far-infrared photons and atomic vibrations in disordered materials has the universal functional form, C(omega) = A + B*omega^2, where the material-specific constants A and B are related to the distributions of fluctuating charges obeying global and local charge neutrality, respectively.Comment: 5 pages, 3 fig
    • …
    corecore