3,455 research outputs found
Pool temperature stratification analysis in CIRCE-ICE facility with RELAP5-3D© model and comparison with experimental tests
In the frame of heavy liquid metal (HLM) technology development, CIRCE pool facility at ENEA/Brasimone Research Center was updated by installing ICE (Integral Circulation Experiments) test section which simulates the thermal behavior of a primary system in a HLM cooled pool reactor. The experimental campaign led to the characterization of mixed convection and thermal stratification in a HLM pool in safety relevant conditions and to the distribution of experimental data for the validation of CFD and system codes. For this purpose, several thermocouples were installed into the pool using 4 vertical supports in different circumferential position for a total of 119 thermocouples [1][2]. The aim of this work is to investigate the capability of the system code RELAP5-3D (c) to simulate mixed convection and thermal stratification phenomena in a HLM pool in steady state conditions by comparing code results with experimental data. The pool has been simulated by a 3D component divided into 1728 volumes, 119 of which are centered in the exact position of the thermocouples. Three dimensional model of the pool is completed with a mono-dimensional nodalization of the primary main flow path. The results obtained by code simulations are compared with a steady state condition carried out in the experimental campaign. Results of axial, radial and azimuthal temperature profile into the pool are in agreement with the available experimental data Furthermore the code is able to well simulate operating conditions into the main flow path of the test section
Pre-test analysis of protected loss of primary pump transients in CIRCE-HERO facility
In the frame of LEADER project (Lead-cooled European Advanced Demonstration Reactor), a new configuration of the steam generator for ALFRED (Advanced Lead Fast Reactor European Demonstrator) was proposed. The new concept is a super-heated steam generator, double wall bayonet tube type with leakage monitoring [1]. In order to support the new steam generator concept, in the framework of Horizon 2020 SESAME project (thermal hydraulics Simulations and Experiments for the Safety Assessment of MEtal cooled reactors), the ENEA CIRCE pool facility will be refurbished to host the HERO (Heavy liquid mEtal pRessurized water cOoled tubes) test section to investigate a bundle of seven full scale bayonet tubes in ALFRED-like thermal hydraulics conditions. The aim of this work is to verify thermofluid dynamic performance of HERO during the transition from nominal to natural circulation condition. The simulations have been performed with RELAP5-3D© by using the validated geometrical model of the previous CIRCE-ICE test section [2], in which the preceding heat exchanger has been replaced by the new bayonet bundle model. Several calculations have been carried out to identify thermal hydraulics performance in different steady state conditions. The previous calculations represent the starting points of transient tests aimed at investigating the operation in natural circulation. The transient tests consist of the protected loss of primary pump, obtained by reducing feed-water mass flow to simulate the activation of DHR (Decay
Heat Removal) system, and of the loss of DHR function in hot conditions, where feed-water mass flow rate is absent. According to simulations, in nominal conditions, HERO bayonet bundle offers excellent thermal hydraulic behavior and, moreover, it allows the operation in natural circulation
Average up/down, strange and charm quark masses with Nf=2 twisted mass lattice QCD
We present a high precision lattice calculation of the average up/down,
strange and charm quark masses performed with Nf=2 twisted mass Wilson
fermions. The analysis includes data at four values of the lattice spacing and
pion masses as low as ~270 MeV, allowing for accurate continuum limit and
chiral extrapolation. The strange and charm masses are extracted by using
several methods, based on different observables: the kaon and the eta_s meson
for the strange quark and the D, D_s and eta_c mesons for the charm. The quark
mass renormalization is carried out non-perturbatively using the RI-MOM method.
The results for the quark masses in the MSbar scheme read: m_ud(2 GeV)= 3.6(2)
MeV, m_s(2 GeV)=95(6) MeV and m_c(m_c)=1.28(4) GeV. We also obtain the ratios
m_s/m_ud=27.3(9) and m_c/m_s=12.0(3).Comment: 20 pages, 5 figures. Typos corrected in eqs. (15)-(17). Version
published in Phys. Rev.
Post-test simulation of a PLOFA transient test in the CIRCE-HERO facility
CIRCE is a lead–bismuth eutectic alloy (LBE) pool facility aimed to simulate the primary system of a heavy liquid metal (HLM) cooled pool-type fast reactor. The experimental facility was implemented with a new test section, called HERO (Heavy liquid mEtal pRessurized water cOoled tubes), which consists of a steam generator composed of seven double-wall bayonet tubes (DWBT) with an active length of six meters. The experimental campaign aims to investigate HERO behavior, which is representative of the tubes that will compose ALFRED SG. In the framework of the Horizon 2020 SESAME project, a transient test was selected for the realization of a validation benchmark. The test consists of a protected loss of flow accident (PLOFA) simulating the shutdown of primary pumps, the reactor scram and the activation of the DHR system. A RELAP5-3D© nodalization scheme was developed in the pre-test phase at DIAEE of “Sapienza” University of Rome, providing useful information to the experimentalists. The model consisted to a mono-dimensional scheme of the primary flow path and the SG secondary side, and a multi-dimensional component simulating the large LBE pool. The analysis of experimental data, provided by ENEA, has suggested to improve the thermal–hydraulic model with a more detailed nodalization scheme of the secondary loop, looking to reproduce the asymmetries observed on the DWBTs operation. The paper summarizes the post-test activity performed in the frame of the H2020 SESAME project as a contribution of the benchmark activity, highlighting a global agreement between simulations and experiment for all the primary circuit physical quantities monitored. Then, the attention is focused on the secondary system operation, where uncertainties related to the boundary conditions affect the computational results
SU(3)-breaking effects in kaon and hyperon semileptonic decays from lattice QCD
We discuss the result of a recent quenched lattice calculation of the K -> pi
vector form factor at zero-momentum transfer, relevant for the determination of
|V_us| from K-> pi l nu decays. Using suitable double ratios of three-point
correlation functions, we show that it is possible to calculate this quantity
at the percent-level precision. The leading quenched effects are corrected for
by means of quenched chiral perturbation theory. The final result, f+(0) =
0.960 +- 0.005_stat +- 0.007_syst, turns out to be in good agreement with the
old quark model estimate made by Leutwyler and Roos. In this paper, we discuss
the phenomenological impact of the lattice result for the extraction of |V_us|,
by updating the analysis of K -> pi l nu decays with the most recent
experimental data. We also present a preliminary lattice study of hyperon Sigma
-> n l nu decays, based on a similar strategy.Comment: 17 pages, 8 figures. Based on talks given at: DAFNE 2004: Physics at
meson factories, Laboratori Nazionali di Frascati (Italy), June 7-11, 2004;
VIII International Conference on "Electron-Nucleus Scattering", Marciana
Marina (Italy), June 21-25, 2004; Lattice 2004, Fermi National Accelerator
Laboratory, Batavia, Illinois (USA), June 21-26, 2004; ICHEP 2004, Beijing
(China), August 16-22, 200
Population-based SEER trend analysis of overall and cancer-specific survival in 5138 patients with gastrointestinal stromal tumor
Background: The objective of the present population-based analysis was to assess survival patterns in patients with resected and metastatic GIST. Methods: Patients with histologically proven GIST were extracted from the Surveillance, Epidemiology and End Results (SEER) database from 1998 through 2011. Survival was determined applying Kaplan-Meier-estimates and multivariable Cox-regression analyses. The impact of size and mitotic count on survival was assessed with a generalized receiver-operating characteristic-analysis. Results: Overall, 5138 patients were included. Median age was 62 years (range: 18–101 years), 47.3% were female, 68.8% Caucasians. GIST location was in the stomach in 58.7% and small bowel in 31.2%. Lymph node and distant metastases were found in 5.1 and 18.0%, respectively. For non-metastatic GIST, three-year overall survival increased from 68.5% (95% CI: 58.8–79.8%) in 1998 to 88.6% (95% CI: 85.3–92.0%) in 2008, cancer-specific survival from 75.3% (95% CI: 66.1–85.9%) in 1998 to 92.2% (95% CI: 89.4–95.1%) in 2008. For metastatic GIST, three-year overall survival increased from 15.0% (95% CI: 5.3–42.6%) in 1998 to 54.7% (95% CI: 44.4–67.3%) in 2008, cancer-specific survival from 15.0% (95% CI: 5.3–42.6%) in 1998 to 61.9% (95% CI: 51.4–74.5%) in 2008 (all PTrend < 0.05). Conclusions: This is the first SEER trend analysis assessing outcomes in a large cohort of GIST patients over a 11-year time period. The analysis provides compelling evidence of a statistically significant and clinically relevant increase in overall and cancer-specific survival from 1998 to 2008, both for resected as well as metastatic GIST
Cooperative Jahn–Teller effect and the role of strain in the tetragonal-to-cubic phase transition in MgxCu1
Temperature and composition dependences of the I41/amd → [Fd\bar 3m] phase transition in the MgxCu1 − xCr2O4 spinel solid solution, due to the melting of the cooperative Jahn–Teller distortion, have been studied by means of single-crystal X-ray diffraction. Crystals with x = 0, 0.10, 0.18, 0.43, 0.46, 0.53, 1 were grown by flux decomposition methods. All crystals have been refined in the tetragonal I41/amd space group except for the Mg end-member, which has cubic symmetry. In MgxCu1 − xCr2O4 the progressive substitution of the Jahn–Teller, d9 Cu2+ cation with spherical and closed-shell Mg2+ has a substantial effect on the crystal structure, such that there is a gradual reduction of the splitting of a and c unit-cell parameters and flattening of the tetrahedra. Single-crystal diffraction data collected in situ up to T = 1173 K show that the tetragonal-to-cubic transition temperature decreases with increasing Mg content. The strength of the Cu—Cu interaction is, in effect, modulated by varying the Cu/Mg ratio. Structure refinements of diffraction data collected at different temperatures reveal that heating results in a gradual reduction in the tetrahedron compression, which remains significant until near the transition temperature, however, at which point the distortion of the tetrahedra rapidly vanishes. The spontaneous strain arising in the tetragonal phase is large, amounting to 10% shear strain, et, and ∼ 1% volume strain, Vs, in the copper chromite end-member at room temperature. Observed strain relationships are consistent with pseudoproper ferroelastic behaviour ([e_{\rm t}^2] ∝ Vs ∝ [q_{\rm JT}^2], where qJT is the order parameter). The I41/amd → [Fd\bar 3m] phase transition is first order in character for Cu-rich samples and then evolves towards second-order character. Although a third order term is permitted by symmetry in the Landau expansion, this behaviour appears to be more accurately represented by a 246 expansion with a change from negative to positive values of the fourth-order coefficient with progressive dilution of the Jahn–Teller cation
Quark masses with Nf=2 twisted mass lattice QCD
We present the results of the recent high precision lattice calculation of
the average up/down, strange and charm quark masses performed by ETMC with Nf=2
twisted mass Wilson fermions. The analysis includes data at four values of the
lattice spacing and pion masses as low as ~270 MeV, allowing for accurate
continuum limit and chiral extrapolation. The strange and charm masses are
extracted by using several methods, based on different observables: the kaon
and the eta_s meson for the strange quark and the D, D_s and eta_c mesons for
the charm. The quark mass renormalization is carried out non-perturbatively
using the RI-MOM method. The results for the quark masses in the MSbar scheme
read: m_ud(2 GeV)= 3.6(2) MeV, m_s(2 GeV)=95(6) MeV and m_c(m_c)=1.28(4) GeV.
We have also obtained the ratios m_s/m_ud=27.3(9) and m_c/m_s=12.0(3).
Moreover, we provide the updated result for the bottom quark mass,
m_b(m_b)=4.3(2) GeV, obtained using the method presented in 0909.3187
[hep-lat].Comment: 7 pages, 7 figures, talk given at the XXVIII International Symposium
on Lattice Field Theory (Lattice 2010), June 14-19 2010, Villasimius, Ital
B-physics computations from Nf=2 tmQCD
We present an accurate lattice QCD computation of the b-quark mass, the B and
Bs decay constants, the B-mixing bag-parameters for the full four-fermion
operator basis, as well as estimates for \xi and f_{Bq}\sqrt{B_q} extrapolated
to the continuum limit and the physical pion mass. We have used Nf = 2
dynamical quark gauge configurations at four values of the lattice spacing
generated by ETMC. Extrapolation in the heavy quark mass from the charm to the
bottom quark region has been carried out using ratios of physical quantities
computed at nearby quark masses, having an exactly known infinite mass limit.Comment: 7 pages, 4 figures, presented at the 31st International Symposium on
Lattice Field Theory (Lattice 2013), 29 July - 3 August 2013, Mainz, German
- …
