201 research outputs found

    Enhanced ionization in small rare gas clusters

    Get PDF
    A detailed theoretical investigation of rare gas atom clusters under intense short laser pulses reveals that the mechanism of energy absorption is akin to {\it enhanced ionization} first discovered for diatomic molecules. The phenomenon is robust under changes of the atomic element (neon, argon, krypton, xenon), the number of atoms in the cluster (16 to 30 atoms have been studied) and the fluency of the laser pulse. In contrast to molecules it does not dissappear for circular polarization. We develop an analytical model relating the pulse length for maximum ionization to characteristic parameters of the cluster

    Relationship between psychological and biological factors and physical activity and exercise behaviour in Filipino students

    Get PDF
    The aim of the present study was threefold. Firstly, it investigated whether a general measure or specific measure of motivational orientation was better in describing the relationship between motivation and exercise behaviour. Secondly, it examined the relationship between the four most popular indirect methods of body composition assessment and physical activity and exercise patterns. Thirdly, the interaction between motivation and body composition on physical activity and exercise behaviour was explored in a sample of 275 Filipino male and female students. Males were found to have higher levels of exercise whereas females had higher levels of physical activity. Furthermore, general self-motivation together with body weight and percentage body fat were found to be the best predictor of exercise behaviour whereas the tension/pressure subscale of the ‘Intrinsic Motivation Inventory’ (IMI) was the best predictor of levels of physical activity. However, significant gender differences were observed. That is, for the males only self-motivation and for the females only body weight and BMI predicted exercise behaviour. Also, tension/pressure predicted physical activity levels for the females but not the males. No inverse relationship was found between the four body composition measures and exercise and physical activity behaviour. The results support the notion that the psychobiological approach might be particularly relevant for high intensity exercise situations but also highlights some important gender differences. Finally, the results of this study emphasise the need for more cross-cultural research

    Waves on the surface of the Orion molecular cloud

    Full text link
    Massive stars influence their parental molecular cloud, and it has long been suspected that the development of hydrodynamical instabilities can compress or fragment the cloud. Identifying such instabilities has proved difficult. It has been suggested that elongated structures (such as the `pillars of creation') and other shapes arise because of instabilities, but alternative explanations are available. One key signature of an instability is a wave-like structure in the gas, which has hitherto not been seen. Here we report the presence of `waves' at the surface of the Orion molecular cloud near where massive stars are forming. The waves seem to be a Kelvin-Helmholtz instability that arises during the expansion of the nebula as gas heated and ionized by massive stars is blown over pre-existing molecular gas.Comment: Preprint of publication in Natur

    Multiple shells around G79.29+0.46 revealed from near-IR to millimeter data

    Get PDF
    Aiming to perform a study of the warm dust and gas in the luminous blue variable star G79.29+0.46 and its associated nebula, we present infrared Spitzer imaging and spectroscopy, and new CO J=2-->1 and 4-->3 maps obtained with the IRAM 30m radio telescope and with the Submillimeter Telescope, respectively. We have analyzed the nebula detecting multiple shells of dust and gas connected to the star. Using Infrared Spectrograph-Spitzer spectra, we have compared the properties of the central object, the nebula, and their surroundings. These spectra show a rich variety of solid-state features (amorphous silicates, polycyclic aromatic hydrocarbons, and CO2 ices) and narrow emission lines, superimposed on a thermal continuum. We have also analyzed the physical conditions of the nebula, which point to the existence of a photo-dissociation region.Comment: Received by ApJ 2009 November 20, accepted for publication 2010 February 25, Published 2010 March 2

    A multiwavelength study of the supernova remnant G296.8-0.3

    Get PDF
    We report XMM-Newton observations of the Galactic supernova remnant G296.8-0.3, together with complementary radio and infrared data. The spatial and spectral properties of the X-ray emission, detected towards G296.8-0.3, was investigated in order to explore the possible evolutionary scenarios and the physical connexion with its unusual morphology detected at radio frequencies. G296.8-0.3 displays diffuse X-ray emission correlated with the peculiar radio morphology detected in the interior of the remnant and with the shell-like radio structure observed to the northwest side of the object. The X-ray emission peaks in the soft/medium energy range (0.5-3.0 keV). The X-ray spectral analysis confirms that the column density is high (NH \sim 0.64 x 10^{22} cm^{-2}) which supports a distant location (d>9 kpc) for the SNR. Its X-ray spectrum can be well represented by a thermal (PSHOCK) model, with kT \sim 0.86 keV, an ionization timescale of 6.1 x 10^{10} cm^{-3} s, and low abundance (0.12 Z_sun). The 24 microns observations show shell-like emission correlated with part of the northwest and southeast boundaries of the SNR. In addition a point-like X-ray source is also detected close to the geometrical center of the radio SNR. The object presents some characteristics of the so-called compact central objects (CCO). Its X-ray spectrum is consistent with those found at other CCOs and the value of NH is consistent with that of G296.8-0.3, which suggests a physical connexion with the SNR.Comment: Accepted for publication in Astrophysics & Space Scienc

    Molecular excitation in the Interstellar Medium: recent advances in collisional, radiative and chemical processes

    Full text link
    We review the different excitation processes in the interstellar mediumComment: Accepted in Chem. Re

    Aspects of ABJM orbifolds with discrete torsion

    Full text link
    We analyze orbifolds with discrete torsion of the ABJM theory by a finite subgroup Γ\Gamma of SU(2)×SU(2)SU(2)\times SU(2) . Discrete torsion is implemented by twisting the crossed product algebra resulting after orbifolding. It is shown that, in general, the order mm of the cocycle we chose to twist the algebra by enters in a non trivial way in the moduli space. To be precise, the M-theory fiber is multiplied by a factor of mm in addition to the other effects that were found before in the literature. Therefore we got a Zk∣Γ∣m\mathbb{Z}_{\frac{k|\Gamma|}{m}} action on the fiber. We present a general analysis on how this quotient arises along with a detailed analysis of the cases where Γ\Gamma is abelian

    Multi-frequency study of supernova remnants in the Large Magellanic Cloud. Confirmation of the supernova remnant status of DEM L205

    Full text link
    We present new X-ray and radio data of the LMC SNR candidate DEM L205, obtained by XMM-Newton and ATCA, along with archival optical and infrared observations. We use data at various wavelengths to study this object and its complex neighbourhood, in particular in the context of the star formation activity, past and present, around the source. We analyse the X-ray spectrum to derive some remnant's properties, such as age and explosion energy. Supernova remnant features are detected at all observed wavelengths: soft and extended X-ray emission is observed, arising from a thermal plasma with a temperature kT between 0.2 keV and 0.3 keV. Optical line emission is characterised by an enhanced [SII]/Halpha ratio and a shell-like morphology, correlating with the X-ray emission. The source is not or only tentatively detected at near-infrared wavelengths (< 10 microns), but there is a detection of arc-like emission at mid and far-infrared wavelengths (24 and 70 micron) that can be unambiguously associated with the remnant. We suggest that thermal emission from dust heated by stellar radiation and shock waves is the main contributor to the infrared emission. Finally, an extended and faint non-thermal radio emission correlates with the remnant at other wavelengths and we find a radio spectral index between -0.7 and -0.9, within the range for SNRs. The size of the remnant is ~79x64 pc and we estimate a dynamical age of about 35000 years. We definitely confirm DEM L205 as a new SNR. This object ranks amongst the largest remnants known in the LMC. The numerous massive stars and the recent outburst in star formation around the source strongly suggest that a core-collapse supernova is the progenitor of this remnant. (abridged)Comment: 11 pages, 6 figures, accepted for publication in A&
    • 

    corecore