3,014 research outputs found

    Velocity correlations and diffusion during sedimentation

    Get PDF
    We study the dynamics of sedimenting non-Brownian particles under steady-state conditions in two-dimensional geometry. We concentrate on the autocorrelation functions of the velocity fluctuations and the corresponding memory functions and diffusion coefficients as functions of ΦV for small but finite Reynolds numbers. For the numerical simulations we have chosen the model of Schwarzer [Phys. Rev. E 52, 6461 (1995)] where a continuum liquid phase is coupled through Stokesian friction to a discrete particle phase with volume fraction ΦV. We find that the steady-state velocity fluctuations are spatially highly anisotropic and the correlation functions parallel to gravity have nonexponential time dependence similar to that of purely dissipative systems with strong interactions. The corresponding memory functions also show nontrivial behavior. Diffusion along the direction of gravity is much faster than perpendicular to it, with the anisotropy decreasing as either the Reynolds number or the volume fraction increases.Peer reviewe

    WRKY70 and its homolog WRKY54 negatively modulate the cell wall-associated defenses to necrotrophic pathogens in Arabidopsis

    Get PDF
    Previous studies have identified the Arabidopsis thaliana transcription factor WRKY70 as a node of convergence for salicylic acid (SA) and jasmonic acid (JA)-mediated defense signal pathways and, together with its closest homolog WRKY54, as a negative regulator of SA biosynthesis. Here, we demonstrate that WRKY70 together with WRKY54 negatively affect the response of Arabidopsis to the necrotrophic pathogens Pectobacterium carotovorum and Botrytis cinerea, but not to the hemibiotroph Pseudomonas syringae pv tomato (Pst) DC3000, as revealed by mutants studies. Unstressed wrky54wrky70 double mutants exhibited increased levels of SA, accumulation of hydrogen peroxide (H2O2) and up-regulated expression of both SA and JA/ethylene (ET) responsive defense related genes. Additionally, protein cross-linking in cell wall was promoted by endogenous SA, suggesting involvement of wall-associated defenses against necrotrophs. This response to necrotrophs was compromised by introducing the sid2-1 allele impairing SA biosynthesis and leading to reduction of H2O2 content and of defense gene expression. The data suggest that the elevated SA level in the wrky54wrky70 double mutant results in moderate accumulation of H2O2, in promoting cell wall fortification and consequently enhanced resistance to necrotrophs but is not sufficient to trigger hypersensitive reaction (HR)-like cell death and resistance to biotrophs/hemibiotrophs like Pst DC3000.Peer reviewe

    Sedimentation dynamics of spherical particles in confined geometries

    Get PDF
    We study the steady-state dynamics of sedimenting non-Brownian particles in confined geometries with full hydrodynamic interactions at small but finite Reynolds numbers. We employ extensive computer simulations using a method where a continuum liquid phase is coupled through Stokesian friction to a discrete particle phase. In particular, we consider a sedimentation box which is otherwise periodic except that it is confined by two parallel walls parallel to gravity with a spacing Lx. By systematically varying Lx we explore the change in dynamics from a quasi-two-dimensional (2D) case to a three-dimensional case. We find that in such confined geometries there is a depletion of particle number density at the walls for small volume fractions, while for large volume fractions there is an excess number of particles at the walls. For the average sedimentation velocity, we find that the Richardson-Zaki law is well obeyed but the decrease of the velocity for dilute systems is slower for smaller values of Lx. We study the anisotropy of the velocity fluctuations and find that in the direction of gravity there is excellent agreement with the predicted scaling with respect to Lx. We also find that the behavior of the corresponding diffusion coefficients as a function of Lx is qualitatively different in the direction parallel to gravity and perpendicular to it. In the quasi-2D limit where particles block each other, the velocity fluctuations behave differently from the other confined systems.Peer reviewe

    Collective Effects in Settling of Spheroids under Steady-State Sedimentation

    Get PDF
    We study the settling dynamics of non-Brownian prolate spheroids under steady-state sedimentation. We consider the case of moderate particle Reynolds numbers properly taking into account the hydrodynamic effects. For small volume fractions, we find an orientational transition of the spheroids, characterized by enhanced density fluctuations. Around the transition, the average settling velocity has a maximum which may even exceed the terminal velocity of a single spheroid, in accordance with experiments.Peer reviewe

    Vibrations of a Columnar Vortex in a Trapped Bose-Einstein Condensate

    Get PDF
    We derive a governing equation for a Kelvin wave supported on a vortex line in a Bose-Einstein condensate, in a rotating cylindrically symmetric parabolic trap. From this solution the Kelvin wave dispersion relation is determined. In the limit of an oblate trap and in the absence of longitudinal trapping our results are consistent with previous work. We show that the derived Kelvin wave dispersion in the general case is in quantitative agreement with numerical calculations of the Bogoliubov spectrum and offer a significant improvement upon previous analytical work.Comment: 5 pages with 1 figur

    Public-Private Partnership in Finnish Water Services

    Full text link
    • …
    corecore