88 research outputs found

    Clearance of Alzheimer's Aβ Peptide The Many Roads to Perdition

    Get PDF
    AbstractThe amyloid hypothesis of Alzheimer's disease (AD) maintains that the accumulation of the amyloid β protein (Aβ) is a critical event in disease pathogenesis. A great deal of both academic and commercial research has focused on the mechanisms by which Aβ is generated. However, investigations into the mechanisms underlying Aβ clearance have blossomed over the last several years. This minireview will summarize pathways involved in the removal of cerebral Aβ, including enzymatic degradation and receptor-mediated efflux out of the brain

    New insights into the genetic etiology of Alzheimer's disease and related dementias

    Get PDF
    Characterization of the genetic landscape of Alzheimer's disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/'proxy' AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE ε4 allele

    Silencing Of The Drosophila Ortholog Of SOX5 Leads To Abnormal Neuronal Development And Behavioral Impairment.

    No full text
    SOX5 encodes a transcription factor that is expressed in multiple tissues including heart, lung and brain. Mutations in SOX5 have been previously found in patients with amyotrophic lateral sclerosis (ALS) and developmental delay, intellectual disability and dysmorphic features. To characterize the neuronal role of SOX5, we silenced the Drosophila ortholog of SOX5, Sox102F, by RNAi in various neuronal subtypes in Drosophila. Silencing of Sox102F led to misorientated and disorganized michrochaetes, neurons with shorter dendritic arborization (DA) and reduced complexity, diminished larval peristaltic contractions, loss of neuromuscular junction bouton structures, impaired olfactory perception, and severe neurodegeneration in brain. Silencing of SOX5 in human SH-SY5Y neuroblastoma cells resulted in a significant repression of WNT signaling activity and altered expression of WNT-related genes. Genetic association and meta-analyses of the results in several large family-based and case-control late-onset familial Alzheimer’s disease (LOAD) samples of SOX5 variants revealed several variants that show significant association with AD disease status. In addition, analysis for rare and highly penetrate functional variants revealed four novel variants/mutations in SOX5, which taken together with functional prediction analysis, suggests a strong role of SOX5 causing AD in the carrier families. Collectively, these findings indicate that SOX5 is a novel candidate gene for LOAD with an important role in neuronal function. The genetic findings warrant further studies to identify and characterize SOX5 variants that confer risk for AD, ALS and intellectual disability

    The ETS genes on chromosome 21 are distal to the breakpoint of the acute myelogenous leukemia translocation (8;21)

    No full text
    The definition of the genetic linkage map of human chromosomes may be helpful in the analysis of cancer-specific chromosome abnormalities. In the translocation (8;21)(q22;q22), a nonrandom cytogenetic abnormality of acute myelogenous leukemia (AML), we previously observed the transposition of the ETS2 gene located at the 21q22 region from chromosome 21 to chromosome 8. However, no ETS2 rearrangements were detected in the DNA of t(8;21)-positive AML cells. Genetic linkage analysis has allowed us to locate the ETS2 gene relative to other loci and to establish that the breakpoint is at an approximate genetic distance of 17 cM from ETS2. When the information from the linkage map is combined with that from molecular studies, it is apparent that (a) the t(8;21) breakpoint does not affect the ETS2 gene structure or the structure of the other four loci proximal to ETS2: D21S55, D21S57, D21S17, and ERG, and ETS-related gene; and (b) the actual DNA sequence involved in the t(8;21) must reside in a 3-cM genetic region between the D21S58 and the D21S55/D21S57 loci, and remains to be identified

    Most pathways can be related to the pathogenesis of Alzheimer’s disease

    No full text
    Alzheimer’s disease (AD) is a complex neurodegenerative disorder. The relative contribution of the numerous underlying functional mechanisms is poorly understood. To comprehensively understand the context and distribution of pathways that contribute to AD, we performed text-mining to generate an exhaustive, systematic assessment of the breadth and diversity of biological pathways within a corpus of 206,324 dementia publication abstracts. A total of 91% (325/335) of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways have publications containing an association via at least 5 studies, while 63% of pathway terms have at least 50 studies providing a clear association with AD. Despite major technological advances, the same set of top-ranked pathways have been consistently related to AD for 30 years, including AD, immune system, metabolic pathways, cholinergic synapse, long-term depression, proteasome, diabetes, cancer, and chemokine signaling. AD pathways studied appear biased: animal model and human subject studies prioritize different AD pathways. Surprisingly, human genetic discoveries and drug targeting are not enriched in the most frequently studied pathways. Our findings suggest that not only is this disorder incredibly complex, but that its functional reach is also nearly global. As a consequence of our study, research results can now be assessed in the context of the wider AD literature, supporting the design of drug therapies that target a broader range of mechanisms. The results of this study can be explored at www.adpathways.org
    corecore