5 research outputs found

    The identification of biologically important secondary structures in disease-causing RNA viruses

    Get PDF
    Masters of ScienceViral genomes consist of either deoxyribonucleic acid (DNA) or ribonucleic acid (RNA). The viral RNA molecules are responsible for two functions, firstly, their sequences contain the genetic code, which encodes the viral proteins, and secondly, they may form structural elements important in the regulation of the viral life-cycle. Using a host of computational and bioinformatics techniques we investigated how predicted secondary structure may influence the evolutionary dynamics of a group of single-stranded RNA viruses from the Picornaviridae family. We detected significant and marginally significant correlations between regions predicted to be structured and synonymous substitution constraints in these regions, suggesting that selection may be acting on those sites to maintain the integrity of certain structures. Additionally, coevolution analysis showed that nucleotides predicted to be base paired, tended to co-evolve with one another in a complimentary fashion in four out of the eleven species examined. Our analyses were then focused on individual structural elements within the genome-wide predicted structures. We ranked the predicted secondary structural elements according to their degree of evolutionary conservation, their associated synonymous substitution rates and the degree to which nucleotides predicted to be base paired coevolved with one another. Top ranking structures coincided with well characterized secondary structures that have been previously described in the literature. We also assessed the impact that genomic secondary structures had on the recombinational dynamics of picornavirus genomes, observing a strong tendency for recombination breakpoints to occur in non-coding regions. However, convincing evidence for the association between the distribution of predicted RNA structural elements and breakpoint clustering was not detected

    Identification and ranking of pervasive secondary structures in positive sense single-stranded ribonucleic acid viral genomes

    Get PDF
    Philosophiae Doctor - PhDThe plasticity of single-stranded viral genomes permits the formation of secondary structures through complementary base-pairing of their component nucleotides. Such structures have been shown to regulate a number of biological processes during the viral life-cycle including, replication, translation, transcription, post-transcriptional editing and genome packaging. However, even randomly generated single-stranded nucleotide sequences have the capacity to form stable secondary structures and therefore, amongst the numerous secondary structures formed in large viral genomes only a few of these elements will likely be biologically relevant. While it is possible to identify functional elements through series of laboratory experiments, this is both excessively resource- and time-intensive, and therefore not always feasible. A more efficient approach involves the use of computational comparative analyses methods to study the signals of molecular evolution that are consistent with selection acting to preserve particular structural elements. In this study, I systematically deploy a collection of computationally-based molecular evolution detection methods to analyse the genomes of viruses belonging to a number of ssRNA viral families (Alphaflexiviridae, Arteriviridae, Caliciviridae, Closteroviridae, Coronavirinae, Flaviviridae, Luteoviridae, Picornaviridae, Potyviridae, Togaviridae and Virgaviridae), for evidence of selectively stabilised secondary structures. To identify potentially important structural elements the approach incorporates structure prediction data with signals of natural selection, sequence co-evolution and genetic recombination. In addition, auxiliary computational tools were used to; 1) quantitatively rank the identified structures in order of their likely biological importance, 2) plot co-ordinates of structures onto viral genome maps, and 3) visualise individual structures, overlaid with estimates from the molecular evolution analyses. I show that in many of these viruses purifying selection tends to be stronger at sites that are predicted to be base-paired within secondary structures, in addition to strong associations between base-paired sites and those that are complementarily co-evolving. Lastly, I show that in recombinant genomes breakpoint locations are weakly associated with co-ordinates of secondary structures. Collectively, these findings suggest that natural selection acting to maintain potentially functional secondary structures has been a major theme during the evolution of these ssRNA viruses

    Evidence of pervasive biologically functional secondary structures within the Genomes of Eukaryotic Single-Stranded DNA Viruses

    Get PDF
    Single-stranded DNA (ssDNA) viruses have genomes that are potentially capable of forming complex secondary structures through Watson-Crick base pairing between their constituent nucleotides. A few of the structural elements formed by such base pairings are, in fact, known to have important functions during the replication of many ssDNA viruses. Unknown, however, are (i) whether numerous additional ssDNA virus genomic structural elements predicted to exist by computational DNA folding methods actually exist and (ii) whether those structures that do exist have any biological relevance. We therefore computationally inferred lists of the most evolutionarily conserved structures within a diverse selection of animal- and plant-infecting ssDNA viruses drawn from the families Circoviridae, Anelloviridae, Parvoviridae, Nanoviridae, and Geminiviridae and analyzed these for evidence of natural selection favoring the maintenance of these structures. While we find evidence that is consistent with purifying selection being stronger at nucleotide sites that are predicted to be base paired than at sites predicted to be unpaired, we also find strong associations between sites that are predicted to pair with one another and site pairs that are apparently coevolving in a complementary fashion. Collectively, these results indicate that natural selection actively preserves much of the pervasive secondary structure that is evident within eukaryote-infecting ssDNA virus genomes and, therefore, that much of this structure is biologically functional. Lastly, we provide examples of various highly conserved but completely uncharacterized structural elements that likely have important functions within some of the ssDNA virus genomes analyzed here.Department of HE and Training approved lis
    corecore