42 research outputs found
Assessing the Potential Impacts to Riparian Ecosystems Resulting from Hemlock Mortality in Great Smoky Mountains National Park
Hemlock Woolly Adelgid (Adelges tsugae) is spreading across forests in eastern North America, causing mortality of eastern hemlock (Tsuga canadensis [L.] Carr.) and Carolina hemlock (Tsuga caroliniana Engelm.). The loss of hemlock from riparian forests in Great Smoky Mountains National Park (GSMNP) may result in significant physical, chemical, and biological alterations to stream environments. To assess the influence of riparian hemlock stands on stream conditions and estimate possible impacts from hemlock loss in GSMNP, we paired hardwood- and hemlock-dominated streams to examine differences in water temperature, nitrate concentrations, pH, discharge, and available photosynthetic light. We used a Geographic Information System (GIS) to identify stream pairs that were similar in topography, geology, land use, and disturbance history in order to isolate forest type as a variable. Differences between hemlock- and hardwood-dominated streams could not be explained by dominant forest type alone as forest type yields no consistent signal on measured conditions of headwater streams in GSMNP. The variability in the results indicate that other landscape variables, such as the influence of understory Rhododendron species, may exert more control on stream conditions than canopy composition. The results of this study suggest that the replacement of hemlock overstory with hardwood species will have minimal impact on long-term stream conditions, however disturbance during the transition is likely to have significant impacts. Management of riparian forests undergoing hemlock decline should, therefore, focus on facilitating a faster transition to hardwood-dominated stands to minimize long-term effects on water quality
Extraordinary Biomass-Burning Episode and Impact Winter Triggered by the Younger Dryas Cosmic Impact ∼12,800 Years Ago. 2. Lake, Marine, and Terrestrial Sediments
Part 1 of this study investigated evidence of biomass burning in global ice records, and here we continue to test the
hypothesis that an impact event at the Younger Dryas boundary (YDB) caused an anomalously intense episode of
biomass burning at ∼12.8 ka on a multicontinental scale (North and South America, Europe, and Asia). Quantitative
analyses of charcoal and soot records from 152 lakes, marine cores, and terrestrial sequences reveal a major peak in
biomass burning at the Younger Dryas (YD) onset that appears to be the highest during the latest Quaternary. For the
Cretaceous-Tertiary boundary (K-Pg) impact event, concentrations of soot were previously utilized to estimate the
global amount of biomass burned, and similar measurements suggest that wildfires at the YD onset rapidly consumed
∼10 million km2 of Earth’s surface, or ∼9% of Earth’s biomass, considerably more than for the K-Pg impact. Bayesian
analyses and age regressions demonstrate that ages for YDB peaks in charcoal and soot across four continents are
synchronous with the ages of an abundance peak in platinum in the Greenland Ice Sheet Project 2 (GISP2) ice core and
of the YDB impact event (12,835–12,735 cal BP). Thus, existing evidence indicates that the YDB impact event caused
an anomalously large episode of biomass burning, resulting in extensive atmospheric soot/dust loading that triggered
an “impact winter.” This, in turn, triggered abrupt YD cooling and other climate changes, reinforced by climatic
feedback mechanisms, including Arctic sea ice expansion, rerouting of North American continental runoff, and subsequent ocean circulation changes
Ecosystem impacts by the Ancestral Puebloans of Chaco Canyon, New Mexico, USA
The Ancestral Puebloans occupied Chaco Canyon, in what is now the southwestern USA, for more than a millennium and harvested useful timber and fuel from the trees of distant forests as well as local woodlands, especially juniper and pinyon pine. These pinyon juniper woodland products were an essential part of the resource base from Late Archaic times (3000-100 BC) to the Bonito phase (AD 800-1140) during the great florescence of Chacoan culture. During this vast expanse of time, the availability of portions of the woodland declined. We posit, based on pollen and macrobotanical remains, that the Chaco Canyon woodlands were substantially impacted during Late Archaic to Basketmaker II times (100 BC-AD 500) when agriculture became a major means of food production and the manufacture of pottery was introduced into the canyon. By the time of the Bonito phase, the local woodlands, especially the juniper component, had been decimated by centuries of continuous extraction of a slow-growing resource. The destabilizing impact resulting from recurrent woodland harvesting likely contributed to the environmental unpredictability and difficulty in procuring essential resources suffered by the Ancestral Puebloans prior to their ultimate departure from Chaco Canyon