8 research outputs found

    A low cost scheme for high precision dual-wavelength laser metrology

    Full text link
    A novel method capable of delivering relative optical path length metrology with nanometer precision is demonstrated. Unlike conventional dual-wavelength metrology which employs heterodyne detection, the method developed in this work utilizes direct detection of interference fringes of two He-Ne lasers as well as a less precise stepper motor open-loop position control system to perform its measurement. Although the method may be applicable to a variety of circumstances, the specific application where this metrology is essential is in an astrometric optical long baseline stellar interferometer dedicated to precise measurement of stellar positions. In our example application of this metrology to a narrow-angle astrometric interferometer, measurement of nanometer precision could be achieved without frequency-stabilized lasers although the use of such lasers would extend the range of optical path length the metrology can accurately measure. Implementation of the method requires very little additional optics or electronics, thus minimizing cost and effort of implementation. Furthermore, the optical path traversed by the metrology lasers is identical with that of the starlight or science beams, even down to using the same photodetectors, thereby minimizing the non-common-path between metrology and science channels.Comment: 17 pages, 4 figures, accepted for publication in Applied Optic

    Low-cost scheme for high-precision dual-wavelength laser metrology

    No full text
    A method capable of delivering relative optical path length metrology with nanometer precision is demonstrated. Unlike conventional dual-wavelength metrology, which employs heterodyne detection, the method developed in this work utilizes direct detection of interference fringes of two He-Ne lasers as well as a less precise stepper motor open-loop position control system to perform its measurement. Although the method may be applicable to a variety of circumstances, the specific application in which this metrology is essential is in an astrometric optical long baseline stellar interferometer dedicated to precise measurement of stellar positions. In our example application of this metrology to a narrow-angle astrometric interferometer, measurement of nanometer precision could be achieved without frequency-stabilized lasers, although the use of such lasers would extend the range of optical path length the metrology can accurately measure. Implementation of the method requires very little additional optics or electronics, thus minimizing the cost and effort of implementation. Furthermore, the optical path traversed by the metrology lasers is identical to that of the starlight or science beams, even down to using the same photodetectors, thereby minimizing the noncommon path between metrology and science channels.This research was supported under the Australian Research Council’s Discovery Project funding scheme. Y. K. was supported by the University of Sydney International Scholarship (USydIS)

    Science and Technology Progress at the Sydney University Stellar Interferometer

    Full text link
    This paper presents an overview of recent progress at the Sydney University Stellar Interferometer (SUSI). Development of the third-generation PAVO beam combiner has continued. The MUSCA beam combiner for high-precision differential astrometry using visible light phase referencing is under active development and will be the subject of a separate paper. Because SUSI was one of the pioneering interferometric instruments, some of its original systems are old and have become difficult to maintain. We are undertaking a campaign of modernization of systems: (1) an upgrade of the Optical Path Length Compensator IR laser metrology counter electronics from a custom system which uses an obsolete single-board computer to a modern one based on an FPGA interfaced to a Linux computer - in addition to improving maintainability, this upgrade should allow smoother motion and higher carriage speeds; (2) the replacement of the aged single-board computer local controllers for the siderostats and the longitudinal dispersion compensator has been completed; (3) the large beam reducing telescope has been replaced with a pair of smaller units with separate accessible foci. Examples of scientific results are also included.Comment: 10 pages, 9 Figure

    Harmful algal blooms and eutrophication : examining linkages from selected coastal regions of the United States

    Get PDF
    Author Posting. © Elsevier B.V., 2008. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Harmful Algae 8 (2008): 39-53, doi:10.1016/j.hal.2008.08.017.Coastal waters of the United States (U.S.) are subject to many of the major harmful algal bloom (HAB) poisoning syndromes and impacts. These include paralytic shellfish poisoning (PSP), neurotoxic shellfish poisoning (NSP), amnesic shellfish poisoning (ASP), ciguatera fish poisoning (CFP) and various other HAB phenomena such as fish kills, loss of submerged vegetation, shellfish mortalities, and widespread marine mammal mortalities. Here, the occurrences of selected HABs in a selected set of regions are described in terms of their relationship to eutrophication, illustrating a range of responses. Evidence suggestive of changes in the frequency, extent or magnitude of HABs in these areas is explored in the context of the nutrient sources underlying those blooms, both natural and anthropogenic. In some regions of the U.S., the linkages between HABs and eutrophication are clear and well documented, whereas in others, information is limited, thereby highlighting important areas for further research.Support was provided through the Woods Hole Center for Oceans and Human Health (to DMA), National Science Foundation (NSF) grants OCE-9808173 and OCE-0430724 (to DMA), OCE-0234587 (to WPC), OCE04-32479 (to MLP), OCE-0138544 (to RMK), OCE-9981617 (to PMG); National Institute of Environmental Health Sciences (NIEHS) grants P50ES012742-01 (to DMA) and P50ES012740 (to MLP); NOAA Grants NA96OP0099 (to DMA), NA16OP1450 (to VLT), NA96P00084 (to GAV and CAH), NA160C2936 and NA108H-C (to RMK), NA860P0493 and NA04NOS4780241 (to PMG), NA04NOS4780239-02 (to RMK), NA06NOS4780245 (to DWT). Support was also provided from the West Coast Center for Oceans and Human Health (to VLT and WPC), USEPA Grant CR826792-01-0 (to GAV and CAH), and the State of Florida Grant S7701617826 (to GAV and CAH)

    Self-phase-referencing interferometry with SUSI

    No full text
    The Sydney University Stellar Interferometer (SUSI) is being fitted with a new beam combiner, called the Micro-arcsecond University of Sydney Companion Astrometry instrument (MUSCA), for the purpose of high precision astrometry of bright binary stars. Operating in the visible wavelength regime where photon-counting and post-processing fringe tracking is possible, MUSCA will be used in tandem with SUSI's primary beam combiner, Precision Astronomical Visible Observations (PAVO), to record high spatial resolution fringes and thereby measure the separation of fringe packets of binary stars. With continued monitoring of stellar separation vectors at precisions in the tens of micro-arcseconds over timescales of years, it will be possible to search for the presence of gravitational perturbations in the orbital motion such as those expected from planetary mass objects in the system. This paper describes the first phase of the development, which includes the setup of the dual beam combiner system and the methodology applied to stabilize fringes of a star by means of self-phase-referencing.12 page(s

    Alternative approach to precision narrow-angle astrometry for Antarctic long baseline interferometry

    No full text
    The conventional approach to high-precision narrow-angle astrometry using a long baseline interferometer is to directly measure the fringe packet separation of a target and a nearby reference star. This is done by means of a technique known as phase-referencing which requires a network of dual beam combiners and laser metrology systems. Using an alternative approach that does not rely on phase-referencing, the narrow-angle astrometry of several closed binary stars (with separation less than 2"), as described in this paper, was carried out by observing the fringe packet crossing event of the binary systems. Such an event occurs twice every sidereal day when the line joining the two stars of the binary is is perpendicular to the projected baseline of the interferometer. Observation of these events is well suited for an interferometer in Antarctica. Proof of concept observations were carried out at the Sydney University Stellar Interferometer (SUSI) with targets selected according to its geographical location. Narrow-angle astrometry using this indirect approach has achieved sub-100 micro-arcsecond precision.17 page(s
    corecore