2,386 research outputs found
Airflow Dynamics of Coughing in Healthy Human Volunteers by Shadowgraph Imaging: An Aid to Aerosol Infection Control
Cough airflow dynamics have been previously studied using a variety of experimental methods. In this study, real-time, non-invasive shadowgraph imaging was applied to obtain additional analyses of cough airflows produced by healthy volunteers. Twenty healthy volunteers (10 women, mean age 32.2±12.9 years; 10 men, mean age 25.3±2.5 years) were asked to cough freely, then into their sleeves (as per current US CDC recommendations) in this study to analyze cough airflow dynamics. For the 10 females (cases 1–10), their maximum detectable cough propagation distances ranged from 0.16–0.55 m, with maximum derived velocities of 2.2–5.0 m/s, and their maximum detectable 2-D projected areas ranged from 0.010–0.11 m2, with maximum derived expansion rates of 0.15–0.55 m2/s. For the 10 males (cases 11–20), their maximum detectable cough propagation distances ranged from 0.31–0.64 m, with maximum derived velocities of 3.2–14 m/s, and their maximum detectable 2-D projected areas ranged from 0.04–0.14 m2, with maximum derived expansion rates of 0.25–1.4 m2/s
Design of a pulse power supply unit for micro-ECM
Electrochemical micro-machining (μECM) requires a particular pulse power supply unit (PSU) to be developed in order to achieve desired machining performance. This paper summarises the development of a pulse PSU meeting the requirements of μECM. The pulse power supply provides tens of nanosecond pulse duration, positive and negative bias voltages and a polarity switching functionality. It fulfils the needs for tool preparation with reversed pulsed ECM on the machine. Moreover, the PSU is equipped with an ultrafast overcurrent protection which prevents the tool electrode from being damaged in case of short circuits. The developed pulse PSU was used to fabricate micro-tools out of 170 μm WC-Co alloy shafts via micro-electrochemical turning and drill deep holes via μECM in a disk made of 18NiCr6. The electrolyte used for both processes was a mixture of sulphuric acid and NaNO3 aqueous solutions.The research reported in this paper is supported by the European Commission within the project “Minimizing Defects in Micro-Manufacturing Applications (MIDEMMA)” (FP7-2011-NMP-ICT-FoF-285614
Service design tools to engage marginalised youth in San Communities of Southern Africa
This paper reports the findings as part of a EU funded project which focuses on the participatory development with the Youth in marginalised communities of Southern Africa. It discusses the advantages of the adoption of Service Design methods in providing selfawareness, engagement and active collaboration among participants. Based on the literature review of Social Innovation, Participatory Design and Service Design, a framework is proposed and suggests a different overview of the role of individuals in a contemporary community, with the aim of identifying features that enable and empower the youths as change agents in their communities. A tool book is created as a result of a selection of the most effective tools and techniques developed and used in a series of workshops carried out with local Youth. Through a case study, we illustrate the use of process and tools that enables and creates an ethical, equal and open platform where the basic skills can be transferred, and issues or challenges identified individually and collectively can be transformed into solution-oriented opportunities
Simvastatin inhibits TLR8 signaling in primary human monocytes and spontaneous TNF production from rheumatoid synovial membrane cultures
Simvastatin has been shown to have anti-inflammatory effects that are independent of its serum cholesterol lowering action, but the mechanisms by which these anti-inflammatory effects are mediated have not been elucidated. To explore the mechanism involved, the effect of simvastatin on Toll-like receptor (TLR) signalling in primary human monocytes was investigated. A short pre-treatment with simvastatin dose-dependently inhibited the production of tumor necrosis factor-α (TNF) in response to TLR8 (but not TLRs 2, 4, or 5) activation. Statins are known inhibitors of the cholesterol biosynthetic pathway, but intriguingly TLR8 inhibition could not be reversed by addition of mevalonate or geranylgeranyl pyrophosphate; downstream products of cholesterol biosynthesis. TLR8 signalling was examined in HEK 293 cells stably expressing TLR8, where simvastatin inhibited IKKα/β phosphorylation and subsequent NF-κB activation without affecting the pathway to AP-1. Since simvastatin has been reported to have anti-inflammatory effects in RA patients and TLR8 signalling contributes to TNF production in human RA synovial tissue in culture, simvastatin was tested in these cultures. Simvastatin significantly inhibited the spontaneous release of TNF in this model which was not reversed by mevalonate. Together, these results demonstrate a hitherto unrecognized mechanism of simvastatin inhibition of TLR8 signalling that may in part explain its beneficial anti-inflammatory effects
Qualitative Real-Time Schlieren and Shadowgraph Imaging of Human Exhaled Airflows: An Aid to Aerosol Infection Control
Using a newly constructed airflow imaging system, airflow patterns were visualized that were associated with common, everyday respiratory activities (e.g. breathing, talking, laughing, whistling). The effectiveness of various interventions (e.g. putting hands and tissues across the mouth and nose) to reduce the potential transmission of airborne infection, whilst coughing and sneezing, were also investigated. From the digital video footage recorded, it was seen that both coughing and sneezing are relatively poorly contained by commonly used configurations of single-handed shielding maneuvers. Only some but not all of the forward momentum of the cough and sneeze puffs are curtailed with various hand techniques, and the remaining momentum is disseminated in a large puff in the immediate vicinity of the cougher, which may still act as a nearby source of infection. The use of a tissue (in this case, 4-ply, opened and ready in the hand) proved to be surprisingly effective, though the effectiveness of this depends on the tissue remaining intact and not ripping apart. Interestingly, the use of a novel ‘coughcatcher’ device appears to be relatively effective in containing coughs and sneezes. One aspect that became evident during the experimental procedures was that the effectiveness of all of these barrier interventions is very much dependent on the speed with which the user can put them into position to cover the mouth and nose effectively
Mechanistic Observation of Interactions between Macrophages and Inorganic Particles with Different Densities
Many different types of inorganic materials are processed into nano/microparticles for medical utilization. The impact of selected key characteristics of these particles, including size, shape, and surface chemistries, on biological systems, is frequently studied in clinical contexts. However, one of the most important basic characteristics of these particles, their density, is yet to be investigated. When the particles are designed for drug delivery, highly mobile macrophages are the major participants in cellular levels that process them in vivo. As such, it is essential to understand the impact of particles’ densities on the mobility of macrophages. Here, inorganic particles with different densities are applied, and their interactions with macrophages studied. A set of these particles are incubated with the macrophages and the outcomes are explored by optical microscopy. This microscopic view provides the understanding of the mechanistic interactions between particles of different densities and macrophages to conclude that the particles’ density can affect the migratory behaviors of macrophages: the higher the density of particles engulfed inside the macrophages, the less mobile the macrophages become. This work is a strong reminder that the density of particles cannot be neglected when they are designed to be utilized in biological applications
An audio-visual system for object-based audio : from recording to listening
Object-based audio is an emerging representation for
audio content, where content is represented in a reproduction format-agnostic way and, thus, produced once for consumption on many different kinds of devices. This affords new opportunities for immersive, personalized, and interactive listening experiences. This paper introduces an end-to-end object-based spatial audio pipeline, from sound recording to listening. A high-level system architecture is proposed, which includes novel audiovisual interfaces to support object-based capture and listenertracked rendering, and incorporates a proposed component for objectification, that is, recording content directly into an object-based form. Text-based and extensible metadata enable communication between the system components. An open architecture for object rendering is also proposed. The system’s capabilities are evaluated in two parts. First, listener-tracked reproduction of metadata automatically estimated from two moving talkers is evaluated using an objective binaural localization model. Second, object-based scene capture with audio extracted using blind source separation (to remix between two talkers) and beamforming (to remix a recording of a jazz group) is evaluate
Self-recognition of the endothelium enables regulatory T-cell trafficking and defines the kinetics of immune regulation
This study was supported by the British Heart Foundation (PG 09/002/
2642). AJR is funded by King’s College London British Heart Foundation Centre of
Excellence and EI was supported by the Department of Health via National Institute
for Health Research (NIHR) comprehensive Biomedical Research Centre award to Guy’s
and St Tomas’ NHF Foundation Trust in partnership with King’s College London and
King’s College Hospital NHS Foundation Trust. BG was supported by a British Heart
Foundation studentship (FS/10/009/28166) and DC by an Arthritis Research UK
Fellowship (18103)
Protocol for the 'e-Nudge trial' : a randomised controlled trial of electronic feedback to reduce the cardiovascular risk of individuals in general practice [ISRCTN64828380]
Background: Cardiovascular disease (including coronary heart disease and stroke) is a major
cause of death and disability in the United Kingdom, and is to a large extent preventable, by lifestyle
modification and drug therapy. The recent standardisation of electronic codes for cardiovascular
risk variables through the United Kingdom's new General Practice contract provides an
opportunity for the application of risk algorithms to identify high risk individuals. This randomised
controlled trial will test the benefits of an automated system of alert messages and practice
searches to identify those at highest risk of cardiovascular disease in primary care databases.
Design: Patients over 50 years old in practice databases will be randomised to the intervention
group that will receive the alert messages and searches, and a control group who will continue to
receive usual care. In addition to those at high estimated risk, potentially high risk patients will be
identified who have insufficient data to allow a risk estimate to be made. Further groups identified
will be those with possible undiagnosed diabetes, based either on elevated past recorded blood
glucose measurements, or an absence of recent blood glucose measurement in those with
established cardiovascular disease.
Outcome measures: The intervention will be applied for two years, and outcome data will be
collected for a further year. The primary outcome measure will be the annual rate of cardiovascular
events in the intervention and control arms of the study. Secondary measures include the
proportion of patients at high estimated cardiovascular risk, the proportion of patients with missing
data for a risk estimate, and the proportion with undefined diabetes status at the end of the trial
- …