14 research outputs found

    Seasonal migration patterns and the maintenance of evolutionary diversity in a cryptic bird radiation

    Get PDF
    Morphological differentiation associated with evolutionary diversification is often explained with adaptive benefits but the processes and mechanisms maintaining cryptic diversity are still poorly understood. Using genome-wide data, we show here that the pale sand martin Riparia diluta in Central and East Asia consists of three genetically deeply differentiated lineages which vary only gradually in morphology but broadly reflect traditional taxonomy. We detected no signs of gene flow along the eastern edge of the Qinghai-Tibetan plateau between lowland south-eastern Chinese R. d. fohkienensis and high-altitude R. d. tibetana. Largely different breeding and migration timing between these low and high altitude populations as indicated by phenology data suggests that allochrony might act as prezygotic isolation mechanism in the area where their ranges abut. Mongolian populations of R. d. tibetana, however, displayed signs of limited mixed ancestries with Central Asian R. d. diluta. Their ranges meet in the area of a well-known avian migratory divide, where western lineages take a western migration route around the Qinghai-Tibetan plateau to winter quarters in South Asia, and eastern lineages take an eastern route to Southeast Asia. This might also be the case between western R. d. diluta and eastern R. d. tibetana as indicated by differing wintering grounds. We hypothesize that hybrids might have nonoptimal intermediate migration routes and selection against them might restrict gene flow. Although further potential isolation mechanisms might exist in the pale sand martin, our study points towards contrasting migration behaviour as an important factor in maintaining evolutionary diversity under morphological stasis

    The impacts of host traits on parasite infection of montane birds in southwestern China

    Get PDF
    Parasitic infections have the potential to impact the hosts’ body condition, elevate physiological responses, and ultimately lead to increased mortality. Host-parasite interactions are tied to the ecological and life-history traits of the hosts. While montane birds are susceptible to avian blood parasites, few studies have simultaneously assessed how inter- and intra-specific traits of hosts influence their probability of parasite infection. In this study, we screened for avian blood parasites across 214 individuals from 51 species at two sites, including a lowland farmland at 700 m and a highland forest at 2,500 m, in the Gaoligong Mountains in southwestern China. Overall blood parasite prevalence was 53.74%, with divergent species-specific prevalence ranging from 6.25% to 66.67%. We also measured traits indicative of body condition and physiological responses of each sampled individual. Using Bayesian phylogenetic logistic models, we assessed whether parasite infection probability is associated with ecological and life history traits of host species. Larger bird species were more likely to be infected than smaller bird species, and omnivore species showed lower susceptibility than those with other diets such as insectivores and herbivores. In contrast, foraging strata, nest type, and participation in mixed-species flocks of host species did not affect infection probability. We then used a reduced sample of eight species with more than five individuals, to assess the associations between intra-specific infection probability and host body condition, represented by fat and muscle reserves, and acute stress responses measured through breath rate. While infected individuals were likely to have more fat reserves than non-infected individuals, we did not find any association between infection probability and muscle reserve and body mass, nor with breath rate. Our results revealed that at the species level, specific traits (body mass and diet) of host species predict infection probability and implied a potential link at the individual level between enhanced body condition and increased resilience to parasite infection

    The structuring role of artificial structure on fish assemblages in a dammed river of the Pearl River in China

    Get PDF
    To address the fish use patterns of artificial structures mimicking floating macrophytes deployed in a impounded tributary of the Pearl River, China, field experiments were performed from December 2014 to June 2016 using multi-mesh gillnet. The fish assemblages using artificial structures differ in terms of species richness, abundance, body size, diversity indices, and ecological traits from fish assemblages on natural barren habitats of this river. Overall, fish abundance, species richness, Shannon diversity index, and functional richness were higher at the artificial structures than at the control sites, while fish length and functional evenness was greater at the control sites in comparison to artificial structures. The introduction of artificial structures did not result in statistically significant effects on fish biomass as artificial structures attracted more individuals with smaller size. Seasonal changes of chlorophyll-a and transparency may affect the efficiency of artificial structure in harboring fishes. This study revealed that artificial structures, as synthesized habitats, are effective in acting as a “fish attractor” and an alternative tool to provide new habitats for smaller individuals in a dammed river like the Youjiang River which is a structure-less ecosystem

    Actively implementing an evidence-based feeding guideline for critically ill patients (NEED): a multicenter, cluster-randomized, controlled trial

    Get PDF
    Background: Previous cluster-randomized controlled trials evaluating the impact of implementing evidence-based guidelines for nutrition therapy in critical illness do not consistently demonstrate patient benefits. A large-scale, sufficiently powered study is therefore warranted to ascertain the effects of guideline implementation on patient-centered outcomes. Methods: We conducted a multicenter, cluster-randomized, parallel-controlled trial in intensive care units (ICUs) across China. We developed an evidence-based feeding guideline. ICUs randomly allocated to the guideline group formed a local "intervention team", which actively implemented the guideline using standardized educational materials, a graphical feeding protocol, and live online education outreach meetings conducted by members of the study management committee. ICUs assigned to the control group remained unaware of the guideline content. All ICUs enrolled patients who were expected to stay in the ICU longer than seven days. The primary outcome was all-cause mortality within 28 days of enrollment. Results: Forty-eight ICUs were randomized to the guideline group and 49 to the control group. From March 2018 to July 2019, the guideline ICUs enrolled 1399 patients, and the control ICUs enrolled 1373 patients. Implementation of the guideline resulted in significantly earlier EN initiation (1.20 vs. 1.55 mean days to initiation of EN; difference − 0.40 [95% CI − 0.71 to − 0.09]; P = 0.01) and delayed PN initiation (1.29 vs. 0.80 mean days to start of PN; difference 1.06 [95% CI 0.44 to 1.67]; P = 0.001). There was no significant difference in 28-day mortality (14.2% vs. 15.2%; difference − 1.6% [95% CI − 4.3% to 1.2%]; P = 0.42) between groups. Conclusions: In this large-scale, multicenter trial, active implementation of an evidence-based feeding guideline reduced the time to commencement of EN and overall PN use but did not translate to a reduction in mortality from critical illness. Trial registration: ISRCTN, ISRCTN12233792. Registered November 20th, 2017

    Actively implementing an evidence-based feeding guideline for critically ill patients (NEED): a multicenter, cluster-randomized, controlled trial.

    Get PDF
    BackgroundPrevious cluster-randomized controlled trials evaluating the impact of implementing evidence-based guidelines for nutrition therapy in critical illness do not consistently demonstrate patient benefits. A large-scale, sufficiently powered study is therefore warranted to ascertain the effects of guideline implementation on patient-centered outcomes.MethodsWe conducted a multicenter, cluster-randomized, parallel-controlled trial in intensive care units (ICUs) across China. We developed an evidence-based feeding guideline. ICUs randomly allocated to the guideline group formed a local "intervention team", which actively implemented the guideline using standardized educational materials, a graphical feeding protocol, and live online education outreach meetings conducted by members of the study management committee. ICUs assigned to the control group remained unaware of the guideline content. All ICUs enrolled patients who were expected to stay in the ICU longer than seven days. The primary outcome was all-cause mortality within 28 days of enrollment.ResultsForty-eight ICUs were randomized to the guideline group and 49 to the control group. From March 2018 to July 2019, the guideline ICUs enrolled 1399 patients, and the control ICUs enrolled 1373 patients. Implementation of the guideline resulted in significantly earlier EN initiation (1.20 vs. 1.55 mean days to initiation of EN; difference - 0.40 [95% CI - 0.71 to - 0.09]; P = 0.01) and delayed PN initiation (1.29 vs. 0.80 mean days to start of PN; difference 1.06 [95% CI 0.44 to 1.67]; P = 0.001). There was no significant difference in 28-day mortality (14.2% vs. 15.2%; difference - 1.6% [95% CI - 4.3% to 1.2%]; P = 0.42) between groups.ConclusionsIn this large-scale, multicenter trial, active implementation of an evidence-based feeding guideline reduced the time to commencement of EN and overall PN use but did not translate to a reduction in mortality from critical illness.Trial registrationISRCTN, ISRCTN12233792 . Registered November 20th, 2017

    Actively implementing an evidence-based feeding guideline for critically ill patients (NEED): a multicenter, cluster-randomized, controlled trial (vol 26, 46, 2022)

    Get PDF
    BackgroundPrevious cluster-randomized controlled trials evaluating the impact of implementing evidence-based guidelines for nutrition therapy in critical illness do not consistently demonstrate patient benefits. A large-scale, sufficiently powered study is therefore warranted to ascertain the effects of guideline implementation on patient-centered outcomes.MethodsWe conducted a multicenter, cluster-randomized, parallel-controlled trial in intensive care units (ICUs) across China. We developed an evidence-based feeding guideline. ICUs randomly allocated to the guideline group formed a local "intervention team", which actively implemented the guideline using standardized educational materials, a graphical feeding protocol, and live online education outreach meetings conducted by members of the study management committee. ICUs assigned to the control group remained unaware of the guideline content. All ICUs enrolled patients who were expected to stay in the ICU longer than seven days. The primary outcome was all-cause mortality within 28 days of enrollment.ResultsForty-eight ICUs were randomized to the guideline group and 49 to the control group. From March 2018 to July 2019, the guideline ICUs enrolled 1399 patients, and the control ICUs enrolled 1373 patients. Implementation of the guideline resulted in significantly earlier EN initiation (1.20 vs. 1.55 mean days to initiation of EN; difference - 0.40 [95% CI - 0.71 to - 0.09]; P = 0.01) and delayed PN initiation (1.29 vs. 0.80 mean days to start of PN; difference 1.06 [95% CI 0.44 to 1.67]; P = 0.001). There was no significant difference in 28-day mortality (14.2% vs. 15.2%; difference - 1.6% [95% CI - 4.3% to 1.2%]; P = 0.42) between groups.ConclusionsIn this large-scale, multicenter trial, active implementation of an evidence-based feeding guideline reduced the time to commencement of EN and overall PN use but did not translate to a reduction in mortality from critical illness.Trial registrationISRCTN, ISRCTN12233792 . Registered November 20th, 2017

    Triploidy Induction by Heat Shock in Mandarin Fish Siniperca chuatsi

    Get PDF
    Mandarin fish, Siniperca chuatsi, is an economically important fish due to its large size, fast growth, and delicious flesh. It is widely cultured in China. In this paper, triploidy in mandarin fish S. chuatsi was induced by heat shock. The most effective triploidy induction was achieved at 41°C, 8 min after fertilization for 2 min resulting in 40% triploid fish. There were no significant differences in the survival rates among the three treatment groups. Ploidy of fish was determined with a flow cytometer and chromosome counting. In conclusion, this paper presents optimal conditions for triploidy induction in mandarin fish with heat shock. The results will contribute to enhancement of its production in culture

    Otolith Microchemistry and Demographic History Provide New Insight into the Migratory Behavior and Heterogeneous Genetic Divergence of <i>Coilia grayii</i> in the Pearl River

    No full text
    Coilia grayii is the anadromous form of anchovy that is distributed in the East and South China Seas. It is a common fish species in the estuarine area of the Pearl River. Nevertheless, freshwater populations appear upstream in the Pearl River, but the migratory pathway has been mostly impeded by dam construction. Behavioral differences and constrained habitat within tributaries are suspected of promoting genetic divergence in these populations. In this study, we investigated the migratory behavior and genetic divergence of six populations of C. grayii fragmented by dams based on the otolith strontium/calcium (Sr/Ca) ratio, mitochondrial DNA, and microsatellite genotyping. All populations were in freshwater with low Sr/Ca ratios, except the estuarine population (Humen population) hatched in brackish water. Reduced nucleotide diversity corresponding to distance was observed. Populations from distant hydrological regions exhibited a decline in genetic diversity and a significant difference with the remaining populations after fitting the isolation by distance model. Pairwise fixation indices confirmed these results and moderate and significant differentiation was found between Hengxian site and downstream sites. Furthermore, STRUCTURE analyses revealed that all separated populations exhibited an admixed phylogenetic pattern except for individuals from the Hengxian locality. The upstream sites showed significantly increased resistance to gene flow from the estuarine population because of isolation by the dam. The results of the neutrality test and Bayesian skyline plots demonstrated complex demography—individuals’ experienced historical expansion and partial upper-dam populations had recently undergone a colonization, forming a new genetic structure. Accordingly, this study demonstrates differences in the migration pattern and genetic differentiation of C. grayii as a consequence of demographic history and current processes (habitat fragmentation and colonization)

    Deep genome-wide phylogeographic structure indicates cryptic diversity in the Middle Spotted Woodpecker (Dendrocoptes medius)

    Get PDF
    Deep phylogeographic structure in mitochondrial DNA not reflected in morphological variation has been uncovered in a number of species over the past few decades. However, inferred phylogeographic structure based solely on mitochondrial DNA can be misleading and might not reflect the true history of evolutionary lineages. Consequently, such cases should be further investigated based on genome-wide data. One of these examples is provided by the Middle Spotted Woodpecker Dendrocoptes medius, a non-migratory habitat specialist associated with old deciduous forests of the Western Palaearctic. It displays strong genetic divergence in mitochondrial DNA between Asian and European populations despite there being only slight variation in morphology between them. Here, we found a clear genomic divergence between Asian and European populations that is consistent with mitochondrial divergence patterns. As revealed by isolation by distance analyses, this differentiation in two lineages was not merely an effect of geography. Genomic population structure indicates that both the Asian and European lineages might each have been separated in more than one refugium during the last glacial maximum. The Middle Spotted Woodpecker might represent a case of cryptic diversity throughout its distribution range, as has been previously found for other taxa across the tree of life. However, we also found footprints of gene flow from the Asian into the European populations, suggesting at least limited introgression upon secondary contact. The processes and mechanisms that might prevent lineage fusion between the morphologically cryptic but genetically divergent lineages of the Middle Spotted Woodpecker need to be further investigated especially in the area of potential secondary contact
    corecore