67,193 research outputs found
Uniform fractional factorial designs
The minimum aberration criterion has been frequently used in the selection of
fractional factorial designs with nominal factors. For designs with
quantitative factors, however, level permutation of factors could alter their
geometrical structures and statistical properties. In this paper uniformity is
used to further distinguish fractional factorial designs, besides the minimum
aberration criterion. We show that minimum aberration designs have low
discrepancies on average. An efficient method for constructing uniform minimum
aberration designs is proposed and optimal designs with 27 and 81 runs are
obtained for practical use. These designs have good uniformity and are
effective for studying quantitative factors.Comment: Published in at http://dx.doi.org/10.1214/12-AOS987 the Annals of
Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical
Statistics (http://www.imstat.org
A re-visit of the phase-resolved X-ray and \gamma-ray spectra of the Crab pulsar
We use a modified outer gap model to study the multi-frequency phase-resolved
spectra of the Crab pulsar. The emissions from both poles contribute to the
light curve and the phase-resolved spectra. Using the synchrotron self-Compton
mechanism and by considering the incomplete conversion of curvature photons
into secondary pairs, the observed phase-averaged spectrum from 100 eV - 10 GeV
can be explained very well. The predicted phase-resolved spectra can match the
observed data reasonably well, too. We find that the emission from the north
pole mainly contributes to Leading Wing 1. The emissions in the remaining
phases are mainly dominated by the south pole. The widening of the azimuthal
extension of the outer gap explains Trailing Wing 2. The complicated
phase-resolved spectra for the phases between the two peaks, namely Trailing
Wing 1, Bridge and Leading Wing 2, strongly suggest that there are at least two
well-separated emission regions with multiple emission mechanisms, i.e.
synchrotron radiation, inverse Compton scattering and curvature radiation. Our
best fit results indicate that there may exist some asymmetry between the south
and the north poles. Our model predictions can be examined by GLAST.Comment: 35 pages, 13 figures, accepted to publish in Ap
Effects of the complex mass distribution of dark matter halos on weak lensing cluster surveys
Gravitational lensing effects arise from the light ray deflection by all of
the mass distribution along the line of sight. It is then expected that weak
lensing cluster surveys can provide us true mass-selected cluster samples. With
numerical simulations, we analyze the correspondence between peaks in the
lensing convergence -map and dark matter halos. Particularly we
emphasize the difference between the peak value expected from a dark
matter halo modeled as an isolated and spherical one, which exhibits a
one-to-one correspondence with the halo mass at a given redshift, and that of
the associated -peak from simulations. For halos with the same expected
, their corresponding peak signals in the -map present a wide
dispersion. At an angular smoothing scale of , our
study shows that for relatively large clusters, the complex mass distribution
of individual clusters is the main reason for the dispersion. The projection
effect of uncorrelated structures does not play significant roles. The
triaxiality of dark matter halos accounts for a large part of the dispersion,
especially for the tail at high side. Thus lensing-selected clusters
are not really mass-selected. (abridged)Comment: ApJ accepte
Coordination motifs and large-scale structural organization in atomic clusters
The structure of nanoclusters is complex to describe due to their
noncrystallinity, even though bonding and packing constraints limit the local
atomic arrangements to only a few types. A computational scheme is presented to
extract coordination motifs from sample atomic configurations. The method is
based on a clustering analysis of multipole moments for atoms in the first
coodination shell. Its power to capture large-scale structural properties is
demonstrated by scanning through the ground state of the Lennard-Jones and
C clusters collected at the Cambridge Cluster Database.Comment: 6 pages, 7 figure
Polarization as a Probe to the Production Mechanisms of Charmonium in Collisions
Measurements of the polarization of \jp produced in pion-nucleus collisions
are in disagreement with leading twist QCD prediction where \jp is observed
to have negligible polarization whereas theory predicts substantial
polarization. We argue that this discrepancy cannot be due to poorly known
structure functions nor the relative production rates of \jp and .
The disagreement between theory and experiment suggests important higher twist
corrections, as has earlier been surmised from the anomalous non-factorized
nuclear -dependence of the \jp cross section.Comment: 8 page
Azimuthal and single spin asymmetry in deep-inelastic lepton-nucleon scattering
We derive a general framework for describing semi-inclusive deep-inelastic
lepton-nucleon scattering in terms of the unintegrated parton distributions and
other higher twist parton correlations. Such a framework provides a consistent
approach to the calculation of inclusive and semi-inclusive cross sections
including higher twist effects. As an example, we calculate the azimuthal
asymmetries to the order of 1/Q in semi-inclusive process with transversely
polarized target. A non-vanishing single-spin asymmetry in the ``triggered
inclusive process'' is predicted to be 1/Q suppressed with a part of the
coefficient related to a moment of the Sivers function.Comment: 9 pages, 1 figur
Magnetic and the magnetocaloric properties of Ce1-xRxFe2 and Ce(Fe1-xMx)2 compounds
We have studied selected rare earth doped and transition metal doped CeFe2
compounds by examining their structural, magnetic and magneto-thermal
properties. With substitution of Ce by 5 and 10% Gd and 10% Ho, the Curie
temperature can be tuned to the range of 267-318 K. Localization of Ce 4f
electronic state with rare earth substitutions is attributed for the
enhancement of Curie temperature. On the other hand, with Ga and Al
substitution at the Fe site, system undergoes paramagnetic to ferromagnetic
transition and then to an antiferromagnetic phase on cooling. The
magnetocaloric effect across the transitions has been studied from both
magnetization isotherms and heat capacity data. It is shown that by choosing
the appropriate dopant and its concentration, the magnetocaloric effect around
room temperature can be tuned.Comment: 13 pages, 6 figures, 2 table
The chemotherapeutic agent DMXAA as a unique IRF3-dependent type-2 vaccine adjuvant
5,6-Dimethylxanthenone-4-acetic acid (DMXAA), a potent type I interferon (IFN) inducer, was evaluated as a chemotherapeutic agent in mouse cancer models and proved to be well tolerated in human cancer clinical trials. Despite its multiple biological functions, DMXAA has not been fully characterized for the potential application as a vaccine adjuvant. In this report, we show that DMXAA does act as an adjuvant due to its unique property as a soluble innate immune activator. Using OVA as a model antigen, DMXAA was demonstrated to improve on the antigen specific immune responses and induce a preferential Th2 (Type-2) response. The adjuvant effect was directly dependent on the IRF3-mediated production of type-I-interferon, but not IL-33. DMXAA could also enhance the immunogenicity of influenza split vaccine which led to significant increase in protective responses against live influenza virus challenge in mice compared to split vaccine alone. We propose that DMXAA can be used as an adjuvant that targets a specific innate immune signaling pathway via IRF3 for potential applications including vaccines against influenza which requires a high safety profile
- …