75,689 research outputs found

    Assessing Friction Characteristics of Liquid Lubricants

    Get PDF
    The decline of fossil fuel reserves and the increasing awareness of greenhouse gas emissions have been the primary driving forces behind the need to conserve energy. To improve fuel efficiency friction modifiers are commonly blended into lubricants. Reduction of friction will clearly lead to less energy requirements. However, an accurate evaluation of lubricant performance is not possible using existing test equipment. The main reason is that current test rigs require operating conditions that induce wear so that the measurement of friction in these rigs is not a real evaluation of friction. The paper will detail the design and commissioning of a purpose built test rig to measure frictional characteristics of various oils as well as the results of the tests performed

    Emergence of highly-designable protein-backbone conformations in an off-lattice model

    Get PDF
    Despite the variety of protein sizes, shapes, and backbone configurations found in nature, the design of novel protein folds remains an open problem. Within simple lattice models it has been shown that all structures are not equally suitable for design. Rather, certain structures are distinguished by unusually high designability: the number of amino-acid sequences for which they represent the unique ground state; sequences associated with such structures possess both robustness to mutation and thermodynamic stability. Here we report that highly designable backbone conformations also emerge in a realistic off-lattice model. The highly designable conformations of a chain of 23 amino acids are identified, and found to be remarkably insensitive to model parameters. While some of these conformations correspond closely to known natural protein folds, such as the zinc finger and the helix-turn-helix motifs, others do not resemble known folds and may be candidates for novel fold design.Comment: 7 figure

    Representation of SO(3) Group by a Maximally Entangled State

    Full text link
    A representation of the SO(3) group is mapped into a maximally entangled two qubit state according to literatures. To show the evolution of the entangled state, a model is set up on an maximally entangled electron pair, two electrons of which pass independently through a rotating magnetic field. It is found that the evolution path of the entangled state in the SO(3) sphere breaks an odd or even number of times, corresponding to the double connectedness of the SO(3) group. An odd number of breaks leads to an additional π\pi phase to the entangled state, but an even number of breaks does not. A scheme to trace the evolution of the entangled state is proposed by means of entangled photon pairs and Kerr medium, allowing observation of the additional π\pi phase.Comment: 4 pages, 3 figure
    corecore