75,689 research outputs found
Assessing Friction Characteristics of Liquid Lubricants
The decline of fossil fuel reserves and the increasing awareness of greenhouse gas emissions have been the primary driving forces behind the need to conserve energy. To improve fuel efficiency friction modifiers are commonly blended into lubricants. Reduction of friction will clearly lead to less energy requirements. However, an accurate evaluation of lubricant performance is not possible using existing test equipment. The main reason is that current test rigs require operating conditions that induce wear so that the measurement of friction in these rigs is not a real evaluation of friction. The paper will detail the design and commissioning of a purpose built test rig to measure frictional characteristics of various oils as well as the results of the tests performed
Emergence of highly-designable protein-backbone conformations in an off-lattice model
Despite the variety of protein sizes, shapes, and backbone configurations
found in nature, the design of novel protein folds remains an open problem.
Within simple lattice models it has been shown that all structures are not
equally suitable for design. Rather, certain structures are distinguished by
unusually high designability: the number of amino-acid sequences for which they
represent the unique ground state; sequences associated with such structures
possess both robustness to mutation and thermodynamic stability. Here we report
that highly designable backbone conformations also emerge in a realistic
off-lattice model. The highly designable conformations of a chain of 23 amino
acids are identified, and found to be remarkably insensitive to model
parameters. While some of these conformations correspond closely to known
natural protein folds, such as the zinc finger and the helix-turn-helix motifs,
others do not resemble known folds and may be candidates for novel fold design.Comment: 7 figure
Recommended from our members
Communicability across evolving networks
Many natural and technological applications generate time ordered sequences of networks, defined over a fixed set of nodes; for example time-stamped information about ‘who phoned who’ or ‘who came into contact with who’ arise naturally in studies of communication and the spread of disease. Concepts and algorithms for static networks do not immediately carry through to this dynamic setting. For example, suppose A and B interact in the morning, and then B and C interact in the afternoon. Information, or disease, may then pass from A to C, but not vice versa. This subtlety is lost if we simply summarize using the daily aggregate network given by the chain A-B-C. However, using a natural definition of a walk on an evolving network, we show that classic centrality measures from the static setting can be extended in a computationally convenient manner. In particular, communicability indices can be computed to summarize the ability of each node to broadcast and receive information. The computations involve basic operations in linear algebra, and the asymmetry caused by time’s arrow is captured naturally through the non-mutativity of matrix-matrix multiplication. Illustrative examples are given for both synthetic and real-world communication data sets. We also discuss the use of the new centrality measures for real-time monitoring and prediction
Representation of SO(3) Group by a Maximally Entangled State
A representation of the SO(3) group is mapped into a maximally entangled two
qubit state according to literatures. To show the evolution of the entangled
state, a model is set up on an maximally entangled electron pair, two electrons
of which pass independently through a rotating magnetic field. It is found that
the evolution path of the entangled state in the SO(3) sphere breaks an odd or
even number of times, corresponding to the double connectedness of the SO(3)
group. An odd number of breaks leads to an additional phase to the
entangled state, but an even number of breaks does not. A scheme to trace the
evolution of the entangled state is proposed by means of entangled photon pairs
and Kerr medium, allowing observation of the additional phase.Comment: 4 pages, 3 figure
- …