815 research outputs found

    The effect of a 24-hour photoperiod on the survival, growth and swim bladder inflation of pre-flexion yellowfin tuna (Thunnus albacares) larvae

    Get PDF
    The effects of two different continuous photoperiod regimes on survival, growth and swim bladder inflation of pre-flexion yellowfin tuna (Thunnus albacares) larvae were investigated. Each photoperiod regime was tested twice with a different larval cohort to confirm the observed results. Trials 1 and 2 tested the effect of a reduced night-time light intensity (10-molesm-2s-1=30% of the daytime intensity) and found that those larvae reared for 8days under the 24h lighting (24-L) photoperiod exhibited a slight improvement in survival compared to those reared under the control photoperiod of 12h light (12-L), however these improvements were not significant. In addition, those larvae reared under this photoperiod regime were equal in length to those in the control. Trials 3 and 4 compared the same variables in larvae reared under a continuous photoperiod (24-L) with a constant light intensity of 30-molesm-2s-1, against those reared under the aforementioned 12-L photoperiod. Survival of larvae under the continuous photoperiods were 9±1% (n=2) and 10±2% (n=3) for Trials 3 and 4, respectively, compared to less than 1% in both control treatments; differences that in both cases were highly significant. In addition, in both trials larvae cultured under the 24-L photoperiod were significantly larger and exhibited more advanced development than those reared under the 12-L photoperiod, however swim bladder inflation was significantly lower. We suggest that the improved survival and growth achieved under a continuous photoperiod is due to the extended foraging time combined with the prevention of mortality caused by night-time sinking

    Jet production in charged current deep inelastic e⁺p scatteringat HERA

    Get PDF
    The production rates and substructure of jets have been studied in charged current deep inelastic e⁺p scattering for Q² > 200 GeV² with the ZEUS detector at HERA using an integrated luminosity of 110.5 pb⁻¹. Inclusive jet cross sections are presented for jets with transverse energies E_{T}^{jet} > 5 GeV. Measurements of the mean subjet multiplicity, 〈n_{sbj}〉, of the inclusive jet sample are presented. Predictions based on parton-shower Monte Carlo models and next-to-leading-order QCD calculations are compared to the measurements. The value of α_{s} (M_{z}), determined from 〈n_{sbj}〉 at y_{cut} = 10⁻² for jets with 25 < E_{T}^{jet} < 119 GeV, is α_{s} (M_{z}) = 0.1202 ± 0.0052 (stat.)_{-0.0019}^{+0.0060} (syst.)_{-0.0053}^{+0.0065} (th.). The mean subjet multiplicity as a function of Q² is found to be consistent with that measured in NC DIS

    When Twilight Comes (I\u27m Thinking Of You)

    Get PDF
    Contains advertisements and/or short musical examples of pieces being sold by publisher.https://digitalcommons.library.umaine.edu/mmb-vp/6994/thumbnail.jp

    Dissociation of virtual photons in events with a leading proton at HERA

    Get PDF
    The ZEUS detector has been used to study dissociation of virtual photons in events with a leading proton, gamma^* p -> X p, in e^+p collisions at HERA. The data cover photon virtualities in two ranges, 0.03<Q^2<0.60 GeV^2 and 2<Q^2<100 GeV^2, with M_X>1.5 GeV, where M_X is the mass of the hadronic final state, X. Events were required to have a leading proton, detected in the ZEUS leading proton spectrometer, carrying at least 90% of the incoming proton energy. The cross section is presented as a function of t, the squared four-momentum transfer at the proton vertex, Phi, the azimuthal angle between the positron scattering plane and the proton scattering plane, and Q^2. The data are presented in terms of the diffractive structure function, F_2^D(3). A next-to-leading-order QCD fit to the higher-Q^2 data set and to previously published diffractive charm production data is presented

    The dependence of dijet production on photon virtuality in ep collisions at HERA

    Get PDF
    The dependence of dijet production on the virtuality of the exchanged photon, Q^2, has been studied by measuring dijet cross sections in the range 0 < Q^2 < 2000 GeV^2 with the ZEUS detector at HERA using an integrated luminosity of 38.6 pb^-1. Dijet cross sections were measured for jets with transverse energy E_T^jet > 7.5 and 6.5 GeV and pseudorapidities in the photon-proton centre-of-mass frame in the range -3 < eta^jet <0. The variable xg^obs, a measure of the photon momentum entering the hard process, was used to enhance the sensitivity of the measurement to the photon structure. The Q^2 dependence of the ratio of low- to high-xg^obs events was measured. Next-to-leading-order QCD predictions were found to generally underestimate the low-xg^obs contribution relative to that at high xg^obs. Monte Carlo models based on leading-logarithmic parton-showers, using a partonic structure for the photon which falls smoothly with increasing Q^2, provide a qualitative description of the data.Comment: 35 pages, 6 eps figures, submitted to Eur.Phys.J.
    corecore