432 research outputs found
Close-packed structures and phase diagram of soft spheres in cylindrical pores
It is shown for a model system consisting of spherical particles confined in cylindrical pores that the first ten close-packed phases are in one-to-one correspondence with the first ten ways of folding a triangular lattice, each being characterized by a roll-up vector like the single-walled carbon nanotube. Phase diagrams in pressure-diameter and temperature-diameter planes are obtained by inherent-structure calculation and molecular dynamics simulation. The phase boundaries dividing two adjacent phases are infinitely sharp in the low-temperature limit but are blurred as temperature is increased. Existence of such phase boundaries explains rich, diameter-sensitive phase behavior unique for cylindrically confined systems
Sepsis-associated neuroinflammation in the spinal cord
Septic patients commonly present with central nervous system (CNS) disorders including impaired consciousness and delirium. Today, the main mechanism regulating sepsis-induced cerebral disorders is believed to be neuroinflammation. However, it is unknown how another component of the CNS, the spinal cord, is influenced during sepsis. In the present study, we intraperitoneally injected mice with lipopolysaccharide (LPS) to investigate molecular and immunohistochemical changes in the spinal cord of a sepsis model. After LPS administration in the spinal cord, pro-inflammatory cytokines including interleukin (IL)-1β, IL-6, and tumor necrosis factor alpha mRNA were rapidly and drastically induced. Twenty-four-hour after the LPS injection, severe neuronal ischemic damage spread into gray matter, especially around the anterior horns, and the anterior column had global edematous changes. Immunostaining analyses showed that spinal microglia were significantly activated and increased, but astrocytes did not show significant change. The current results indicate that sepsis induces acute neuroinflammation, including microglial activation and pro-inflammatory cytokine upregulation in the spinal cord, causing drastic neuronal ischemia and white matter edema in the spinal cord
Phase diagram of water between hydrophobic surfaces
Molecular dynamics simulations demonstrate that there are at least two classes of quasi-two-dimensional solid water into which liquid water confined between hydrophobic surfaces freezes spontaneously and whose hydrogen-bond networks are as fully connected as those of bulk ice. One of them is the monolayer ice and the other is the bilayer solid which takes either a crystalline or an amorphous form. Here we present the phase transformations among liquid, bilayer amorphous (or crystalline) ice, and monolayer ice phases at various thermodynamic conditions, then determine curves of melting, freezing, and solid-solid structural change on the isostress planes where temperature and intersurface distance are variable, and finally we propose a phase diagram of the confined water in the temperature-pressure-distance space
Formation of ice nanotube with hydrophobic guests inside carbon nanotube
A composite ice nanotube inside a carbon nanotube has been explored by molecular dynamics and grandcanonical Monte Carlo simulations. It is made from an octagonal ice nanotube whose
hollow space contains hydrophobic guest molecules such as neon, argon, and methane. It is shown that the attractive interaction of the guest molecules stabilizes the ice nanotube. The guest occupancy of the hollow space is calculated by the same method as applied to clathrate hydrates
On the thermodynamic stability and structural transition of clathrate hydrates
Gas mixtures of methane and ethane form structure II clathrate hydrates despite the fact that each of pure methane and pure ethane gases forms the structure I hydrate. Optimization of the interaction potential parameters for methane and ethane is attempted so as to reproduce the dissociation pressures of each simple hydrate containing either methane or ethane alone. An account for the structural transitions between type I and type II hydrates upon changing the mole fraction of the gas mixture is given on the basis of the van der Waals and Platteeuw theory with these optimized potentials. Cage occupancies of the two kinds of hydrates are also calculated as functions of the mole fraction at the dissociation pressure and at a fixed pressure well above the dissociation pressure
- …