333 research outputs found

    Fire Performance of Steel Reinforced Concrete (SRC) Structures

    Get PDF
    AbstractThis paper summarizes some of the recent research published on steel reinforced concrete (SRC) structures under or after exposure to fire. The contents include: 1) Fire resistance and post-fire behavior of SRC columns; 2) Fire performance of SRC column to beam joints, by adopting a loading sequence including initial loading, heating, cooling and post-fire loading; 3) Fire resistance and post-fire behavior of SRC composite frames

    Analysis of concrete-filled stainless steel tubular columns under combined fire and loading

    Full text link
    [EN] In fire scenarios, concrete-filled stainless steel tubular (CFSST) columns undergo initial loading at ambient temperature, loading during the heating phase as the fire develops, loading during the cooling phase as the fire dies out and continual loading after the fire. CFSST columns may fail some points during this process under combined fire and loading. In this paper, the failure modes and corresponding working mechanism of CFSST columns subjected to an entire loading and fire history are investigated. Sequentially coupled thermal-stress analyses in ABAQUS are employed to establish the temperature field and structural response of the CFSST column. To improve the precision of the finite element (FE) model, the influence of moisture on the thermal conductivity and specific heat of concrete during both the heating and cooling phases is considered using subroutines. Existing fire and post-fire test data of CFSST columns are used to validate the FE models. Comparisons between predicted and test results confirm that the accuracy of the FE models is acceptable; the FE models are then extended to simulate a typical CFSST column subjected to the entire loading and fire history. The behaviour of the CFSST column is explained by analysis of the temperature distribution, load versus axial deformation curves and failure response.The research reported in the paper is part of the Project 51308539 supported by the National Natural Science Foundation of China. The financial support is highly appreciated.Tan, Q.; Gardner, L.; Han, L.; Song, D. (2018). Analysis of concrete-filled stainless steel tubular columns under combined fire and loading. En Proceedings of the 12th International Conference on Advances in Steel-Concrete Composite Structures. ASCCS 2018. Editorial Universitat Politècnica de València. 825-833. https://doi.org/10.4995/ASCCS2018.2018.7206OCS82583

    BotMoE: Twitter Bot Detection with Community-Aware Mixtures of Modal-Specific Experts

    Full text link
    Twitter bot detection has become a crucial task in efforts to combat online misinformation, mitigate election interference, and curb malicious propaganda. However, advanced Twitter bots often attempt to mimic the characteristics of genuine users through feature manipulation and disguise themselves to fit in diverse user communities, posing challenges for existing Twitter bot detection models. To this end, we propose BotMoE, a Twitter bot detection framework that jointly utilizes multiple user information modalities (metadata, textual content, network structure) to improve the detection of deceptive bots. Furthermore, BotMoE incorporates a community-aware Mixture-of-Experts (MoE) layer to improve domain generalization and adapt to different Twitter communities. Specifically, BotMoE constructs modal-specific encoders for metadata features, textual content, and graphical structure, which jointly model Twitter users from three modal-specific perspectives. We then employ a community-aware MoE layer to automatically assign users to different communities and leverage the corresponding expert networks. Finally, user representations from metadata, text, and graph perspectives are fused with an expert fusion layer, combining all three modalities while measuring the consistency of user information. Extensive experiments demonstrate that BotMoE significantly advances the state-of-the-art on three Twitter bot detection benchmarks. Studies also confirm that BotMoE captures advanced and evasive bots, alleviates the reliance on training data, and better generalizes to new and previously unseen user communities.Comment: Accepted at SIGIR 202

    Differences in diversity and community assembly processes between planktonic and benthic diatoms in the upper reach of the Jinsha River, China

    Get PDF
    Comparing spatio-temporal patterns between planktonic and benthic algae is helpful for understanding their associations and differences. However, such studies are still rare especially in large rivers. We used a dataset collected in the upper reach of the Jinsha River in different seasons to explore biodiversity and assembly processes of planktonic and benthic diatom assemblages. We found that planktonic and benthic diatoms presented different seasonal variation in species richness and community compositions. We also found evidence that planktonic and benthic diatoms were coupled in the summer. Planktonic diatom assemblages were mainly affected by spatial processes via directional spatial dispersal, especially in the summer. By comparison, benthic diatom assemblages were more affected by environmental processes. Our findings suggest that mass effect and species sorting paradigms explain the assembly processes of planktonic and benthic diatom assemblages, respectively, but the explanatory powers of these two paradigms vary seasonally. To effectively monitor and assess ecological conditions of large rivers, we recommend using benthic algae as a biotic indicator group as they had stronger correlations with environmental factors.Peer reviewe

    Detecting Spoilers in Movie Reviews with External Movie Knowledge and User Networks

    Full text link
    Online movie review platforms are providing crowdsourced feedback for the film industry and the general public, while spoiler reviews greatly compromise user experience. Although preliminary research efforts were made to automatically identify spoilers, they merely focus on the review content itself, while robust spoiler detection requires putting the review into the context of facts and knowledge regarding movies, user behavior on film review platforms, and more. In light of these challenges, we first curate a large-scale network-based spoiler detection dataset LCS and a comprehensive and up-to-date movie knowledge base UKM. We then propose MVSD, a novel Multi-View Spoiler Detection framework that takes into account the external knowledge about movies and user activities on movie review platforms. Specifically, MVSD constructs three interconnecting heterogeneous information networks to model diverse data sources and their multi-view attributes, while we design and employ a novel heterogeneous graph neural network architecture for spoiler detection as node-level classification. Extensive experiments demonstrate that MVSD advances the state-of-the-art on two spoiler detection datasets, while the introduction of external knowledge and user interactions help ground robust spoiler detection. Our data and code are available at https://github.com/Arthur-Heng/Spoiler-DetectionComment: EMNLP 202

    HOFA: Twitter Bot Detection with Homophily-Oriented Augmentation and Frequency Adaptive Attention

    Full text link
    Twitter bot detection has become an increasingly important and challenging task to combat online misinformation, facilitate social content moderation, and safeguard the integrity of social platforms. Though existing graph-based Twitter bot detection methods achieved state-of-the-art performance, they are all based on the homophily assumption, which assumes users with the same label are more likely to be connected, making it easy for Twitter bots to disguise themselves by following a large number of genuine users. To address this issue, we proposed HOFA, a novel graph-based Twitter bot detection framework that combats the heterophilous disguise challenge with a homophily-oriented graph augmentation module (Homo-Aug) and a frequency adaptive attention module (FaAt). Specifically, the Homo-Aug extracts user representations and computes a k-NN graph using an MLP and improves Twitter's homophily by injecting the k-NN graph. For the FaAt, we propose an attention mechanism that adaptively serves as a low-pass filter along a homophilic edge and a high-pass filter along a heterophilic edge, preventing user features from being over-smoothed by their neighborhood. We also introduce a weight guidance loss to guide the frequency adaptive attention module. Our experiments demonstrate that HOFA achieves state-of-the-art performance on three widely-acknowledged Twitter bot detection benchmarks, which significantly outperforms vanilla graph-based bot detection techniques and strong heterophilic baselines. Furthermore, extensive studies confirm the effectiveness of our Homo-Aug and FaAt module, and HOFA's ability to demystify the heterophilous disguise challenge.Comment: 11 pages, 7 figure

    Distinct differences of vertical phytoplankton community structure in mainstream and a tributary bay of the Three Gorges Reservoir, China

    Get PDF
    The vertical distribution of phytoplankton plays a crucial role in shaping the dynamics and structure of aquatic communities. In highly dynamic reservoir systems, water level fluctuations significantly affect the physiochemical conditions and the phytoplankton community. However, the specific effects on the vertical characteristics of phytoplankton between the mainstream and the tributary bay of the reservoir remain unstudied. This study investigated the vertical aspects of phytoplankton density, biomass, α and β diversity through monthly sampling over two years in the mainstream (Chang Jiang, CJ) and a tributary bay (Xiang Xi, XX) of the Three Gorges Reservoir in China. Phytoplankton density and biomass were significantly higher in XX, indicating an increased risk of algal blooms in the tributary. The phytoplankton community in CJ showed more stable species-environment relationships, a lower Shannon index and a higher evenness index, suggesting a relatively simple structure and a more uniform distribution of phytoplankton among different water layers. Conversely, XX showed greater differences between water layers (higher β diversity), with significant negative correlations with water level and positive correlations with DO difference, dissolved silica (DSi) difference, and stratification. Peak phytoplankton density and biomass, as well as high β diversity in XX, occurred during periods of decreased water levels with strong stratification in spring and summer. A structural equation model complemented by path analysis revealed that a decrease in water level could increase β diversity either directly through internal processes with extended residence time or indirectly by modifying stratification and the vertical distribution of DSi in XX. Therefore, a proposed water quality management strategy for XX was to increase the water level or reduce β diversity by implementing artificial mixing during stratification periods. Overall, this study lies in its comprehensive investigation of the vertical characteristics of the phytoplankton community in both the mainstream and the tributary bay of the Three Gorges Reservoir, elucidating the significant impact of water level fluctuations and providing insights for targeted water quality management strategies in the tributary bay to mitigate potential ecological impacts

    Daily process and key characteristics of phytoplankton bloom during a low-water level period in a large subtropical reservoir bay

    Get PDF
    Reservoirs, heavily influenced by artificial management, often harbor phytoplankton assemblages dominated by cyanobacteria or dinoflagellates, triggering significant changes in aquatic ecosystems. However, due to limited sampling frequency and insufficient attention to species composition, the bloom processes and key characteristics of phytoplankton community structure have not been systematically elucidated. During the low-water level period when blooms are most likely to occur (June to September) in a tributary bay of the Three Gorges Reservoir, daily sampling was conducted to investigate phytoplankton community composition, identify significant environmental factors, and evaluate important structure characteristics of phytoplankton community. The results showed that Microcystis aeruginosa maintained a clear dominance for almost a month in stage 1, with low Shannon and evenness but a high dominance index. Phytoplankton total density and biomass decreased drastically in stage 2, but Microcystis aeruginosa still accounted for some proportion. The highest Shannon and evenness but the lowest dominance index occurred in stage 3. Peridiniopsis niei occurred massively in stage 4, but its dominant advantages lasted only one to two days. NH4-N was responsible for the dominance of Microcystis aeruginosa, while TP and PO4-P was responsible for the dominance of Peridiniopsis niei; however, precipitation contributed to their drastic decrease or disappearance to some extent. The TN : TP ratio could be considered as an important indicator to determine whether Microcystis aeruginosa or Peridiniopsis niei dominated the phytoplankton community. Throughout the study period, physiochemical factors explained more variation in phytoplankton data than meteorological and hydrological factors. Pairwise comparisons revealed an increase in average β diversity with stage progression, with higher β diversities based on abundance data than those based on presence/absence data. Repl had a greater effect on β diversity differences based on presence/absence data, whereas RichDiff had a greater effect on β diversity differences based on species abundance data. Co-occurrence networks for stage 1 showed the most complex structure, followed by stage 4, while the network for stage 3 was relatively sparse, although the overall community division remained compact. This study provides a useful attempt to explore the status and changes in phytoplankton community structure during the bloom process through high-resolution investigation

    Aquatic protected area system in the Qinghai–Tibet Plateau: establishment, challenges and prospects

    Get PDF
    Conservation of wetlands on the Qinghai–Tibet Plateau is vital to the ecological security of China and even all of Asia. In this study, we investigated the aquatic protected area system established by the Chinese government in the Qinghai–Tibet Plateau. In general, 9 categories of aquatic protected areas have been established in this area, linked to the International Union for Conservation of Nature classification system of protected areas. The diverse main protection objectives of different protected areas have played a key role in wetland conservation. However, the protection of wetland environments and aquatic organisms has been insufficient in some atypical protected areas and local protected areas. We further constructed a list of important aquatic organisms in the Qinghai–Tibet Plateau and analyzed the protected status of those important species through gap analysis. A total of 156 important aquatic species were identified, with 8 gap species and 18 inadequately protected species. It is encouraging that none of the national key protected species are gap species, but there are 4 gap species that are threatened species on “China’s red list”. In addition, we found that 17 important species are designated as Data Deficient or Not Evaluated on “China’s red list”, including 8 national key protected species. Finally, we propose the prospects for solving the existing problems of aquatic protected area systems: integrating aquatic protected areas, enhancing the status of community-based conservation, and increasing investment in important aquatic organism research
    • …
    corecore